Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2023

Sammendrag

The aim of this study was to contribute to development of organic fertiliser products based on fish sludge (i.e. feed residues and faeces) from farmed smolt. Four dried fish sludge products, one liquid digestate after anaerobic digestion and one dried digestate were collected at Norwegian smolt hatcheries in 2019 and 2020. Their quality as fertilisers was studied by chemical analyses, two 2-year field experiments with spring cereals and soil incubation combined with a first-order kinetics N release model. Cadmium (Cd) and zinc (Zn) concentrations were below European Union maximum limits for organic fertilisers in all products except one (liquid digestate). Relevant organic pollutants (PCB7, PBDE7, PCDD/F + DL-PCB) were analysed for the first time and detected in all fish sludge products. Nutrient composition was unbalanced, with low nitrogen/phosphorus (N/P) ratio and low potassium (K) content relative to crop requirements. Nitrogen concentration in the dried fish sludge products varied (27–70 g N kg-1 dry matter), even when treated by the same technology but sampled at different locations and/or times. In the dried fish sludge products, N was mainly present as recalcitrant organic N, resulting in lower grain yield than with mineral N fertiliser. Digestate showed equally good N fertilisation effect as mineral N fertiliser, but drying reduced N quality. Soil incubation in combination with modelling is a relatively cheap tool that can give a good indication of N quality in fish sludge products with unknown fertilisation effects. Carbon/N ratio in dried fish sludge can also be used as an indicator of N quality.

Til dokument

Sammendrag

Powdery mildew, caused by the ascomycete Podosphaera aphanis, is an important disease of strawberry. A slightly modified version of a method using steam thermotherapy to rid diseases and pests from strawberry transplants was tested against strawberry powdery mildew. Experiments took place in Norway and Florida, with potted strawberry plants heavily infected with the fungus. Aerated steam treatments of the plants were carried out as follows: a pre-treatment with steaming at 37 °C for 1 h was followed by 1 h at ambient temperature before plants were exposed to steaming at 40, 42, or 44 °C for 2 or 4 h in Norway and 44 °C for 4 h in Florida. Following steaming, plants from the different treatments and the untreated control were kept apart and protected from outside contamination of powdery mildew by growing them in closed containers with over-pressure. On steamed plants, hyphae of P. aphanis were dead and without any new spore formation after treatments, independent of temperature or exposure time; however, up to 99% of the area infected with powdery mildew prior to treatments contained actively sporulating lesions on non-steamed plants. None of the new leaves formed after steaming had powdery mildew, whereas more than half of the new leaves on non-treated plants were infected by P. aphanis. This investigation clearly indicates that steam thermotherapy can eradicate powdery mildew from strawberry transplants, and this can be achieved at lower temperatures and exposure times than previously reported for other pathogens.