Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2025
Authors
Eirik Gottschalk Ballo William J. D’Andrea Helge Irgens Høeg Kjetil Loftsgarden Manon Bajard Sabine Eckhardt Massimo Cassiani Nikolaos Evangeliou Jostein Bakke Kirstin KrügerAbstract
No abstract has been registered
Authors
Paul Eric Aspholm Carmen Rizzo Gabriella Caruso Giovanna Maimone Luisa Patrolecco Marco Termine Marco Bertolino Stefania Giannarelli Alessandro Ciro Rappazzo Josef Elster Alessio Lena Maria Papale Tanita Pescatore Jasmin Rauseo Rosamaria Soldano Francesca Spataro Maurizio Azzaro A Lo GiudiceAbstract
No abstract has been registered
Authors
Daniel James Sargent Matteo Buti Stefan Martens Claudio Pugliesi Kjersti Aaby Dag Røen Chandra Bhan Yadav Felicidad Fernández Fernández Muath K Alsheikh Jahn Davik R. Jordan PriceAbstract
No abstract has been registered
Authors
Laurie C. Hofmann Janina Brakel Inka Bartsch Gabriel Montecinos Arismendi Ricardo Bermejo Manuela I Parentef Emeline Creis Olivier De Clerck Bertrand Jacquemin Jessica Knoop Maike Lorenz Levi Pompermayer Machado Neusa Martinsk Sotiris Orfanidis Ian Probert Cecilia Rad-Menéndez Michael Ross Ralf Rautenberger Jessica Schiller Ester A. Serrao Sophie Steinhagen Ronan Sulpice Myriam Valero Thomas WichardAbstract
Biobanking (also known as germplasm banking) of genetic material is a well-established concept for preserving plant genetic diversity and also contributes to food security, conservation and restoration. Macroalgae currently represent a very small percentage of the strains in publicly accessible European germplasm banks, despite the increasing recognition of their contribution to achieving several of the United Nations Sustainable Development Goals. There is no strategic coordination of existing macroalgal strains, which could have severe ecological and economic implications as species and their genetic diversity disappear rapidly due to local and global environmental stressors. In this opinion paper, we stress the importance of a coordinated European effort for preserving macroalgal genetic diversity and suggest the development of a three-pillared system to safeguard European macroalgal genetic material consisting of (1) a European Board of Macroalgal Genetic Resources (EBMGR) to provide supervision, support and coordination, (2) a network of germplasm banks consisting of currently existing and newly established infrastructures and (3) an interoperable databank integrating existing databanks. While it will be the task of the EBMGR to identify and coordinate priorities, we offer initial recommendations for preserving macroalgal genetic material, discuss the risks of inaction, and highlight the challenges that must be overcome. Highlights • A coordinated European effort is crucial to preserve macroalgal genetic diversity, addressing rapid species and genetic loss due to environmental stressors. • The initiative should include a European Board of Macroalgal Genetic Resources for oversight, a network of existing and new germplasm banks and an interoperable databank integrating current resources. • The effort supports the United Nations Sustainable Development Goals.
Abstract
No abstract has been registered
Authors
David Chludil Jaroslav Čepl Arne Steffenrem Jan Stejskal Christi Sagariya Torsten Pook Silvio Schueler Jiří Korecký Curt Almqvist Debojyoti Chakraborty Mats Berlin Milan LstibůrekAbstract
No abstract has been registered
Authors
Lucía D. Moreyra Alfonso Susanna Juan Antonio Calleja Jennifer R. Ackerfield Turan Arabacı Carme Blanco-Gavaldà Christian Brochmann Tuncay Dirmenci Kazumi Fujikawa Mercè Galbany-Casals Tiangang Gao Abel Gizaw Seid Iraj Mehregan Roser Vilatersana Juan Viruel Bayram Yıldız Frederik Leliaert Alexey P. Seregin Cristina RoquetAbstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
Based on data from 58 stands located in three different regions within Norway, this study presents new models for quantifying growth characteristics of young, planted trees of Norway spruce (Picea abies (L.) Karst), a species that forms the backbone of the Norwegian forestry sector. The study focused on well-established, sufficiently stocked plantations to capture their inherent growth patterns. The presented models predict total tree height and the number of years required to reach a diameter at breast height of 5 cm for dominant and average-sized individuals, using common tree- and stand-level metrics. The study’s findings indicate enhanced growth of young spruce stands compared to growth dynamics observed in the 1960–1970s, likely due to improved growing conditions. The models presented here are an improvement over existing similar models and can be used in future forest growth and yield simulations. The study also aimed to provide a means to predict diameter distributions of young spruce plantations. While the results suggested significant differences between observed and predicted distributions, this still represents progress as there are currently no tools to estimate diameter distributions of young spruce plantations in Norway. Further research is recommended to corroborate the findings across a larger number of sites and to consider larger sample plots for potentially more accurate diameter distribution predictions.
Abstract
No abstract has been registered