Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2020

To document

Abstract

Across the northern hemisphere, six species of aspen (Populus spp.) play a disproportionately important role in promoting biodiversity, sequestering carbon, limiting forest disturbances, and providing other ecosystem services. These species are illustrative of efforts to move beyond single-species conservation because they facilitate hundreds of plants and animals worldwide. This review is intended to place aspen in a global conservation context by focusing on the many scientific advances taking place in such biologically diverse systems. In this manner, aspen may serve as a model for other widespread keystone systems where science-based practice may have world implications for biodiversity conservation. In many regions, aspen can maintain canopy dominance for decades to centuries as the sole major broadleaf trees in forested landscapes otherwise dominated by conifers. Aspen ecosystems are valued for many reasons, but here we highlight their potential as key contributors to regional and global biodiversity. We present global trends in research priorities, strengths, and weaknesses based on, 1) a qualitative survey, 2) a systematic literature analysis, and 3) regional syntheses of leading research topics. These regional syntheses explore important aspen uses, threats, and research priorities with the ultimate intent of research sharing focused on sound conservation practice. In all regions, we found that aspen enhance biodiversity, facilitate rapid (re)colonization in natural and damaged settings (e.g., abandoned mines), and provide adaptability in changing environments. Common threats to aspen ecosystems in many, but not all, regions include effects of herbivory, land clearing, logging practices favoring conifer species, and projected climate warming. We also highlight regional research gaps that emerged from the three survey approaches above. We believe multi-scale research is needed that examines disturbance processes in the context of dynamic climates where ecological, physiological, and genetic variability will ultimately determine widespread aspen sustainability. Based on this global review of aspen research, we argue for the advancement of the “mega-conservation” strategy, centered on the idea of sustaining a set of common keystone communities (aspen) that support wide arrays of obligate species. This approach contrasts with conventional preservation which focuses limited resources on individual species residing in narrow niches.

To document

Abstract

The main objective of this paper is to present the new model BASGRA_N, to show how it was parameterized for grass swards in Scandinavia, and to evaluate its performance in predicting above-ground biomass, crude protein, cell wall content and dry matter digestibility. The model was developed to allow simulation of: (1) the impact of N-supply on the plants and their environment, (2) the dynamics of greenhouse gas emissions from grasslands, (3) the dynamics of cell-wall content and digestibility of leaves and stems, which could not be simulated with its predecessor, the BASGRA-model. To calibrate and test the model, we used field experimental data. One dataset included observations of biomass (DM) and crude protein content (CP) under different N fertilizer regimes from five sites in central and southern Sweden. The other dataset included observations of DM, and sward components as well as CP, cell wall content (NDF) and DM digestibility as affected by harvesting regime from one site in southwestern Norway. The total number of experiments was nine, of which three were used for model testing. When BASGRA_N was run with the maximum a-posteriori (MAP) parameter vector from the Bayesian calibration for the Swedish test sites, DM and CP were both simulated to an overall Pearson correlation coefficient (Rb) of minimum 0.58, Willmott's index of agreement (d) of minimum 0.69 and normalized root mean squared error (NRMSE) of maximum 0.30. Corresponding metrics for Norwegian test sites were 0.93, 0.96 and 0.27 for DM and > 0.73, > 0.61, < 0.18 for DM digestibility, NDF and CP content, respectively. We conclude that BASGRA_N can be used to simulate yield and CP responses to N with satisfactory precision, while maintaining key features from its predecessor. The results also suggest that DM digestibility and NDF can be simulated satisfactorily, which is supported by results from a recent model comparison study. Further testing of the model is needed for a few variables for which we currently do not have enough data, notably leaching and emission of N-containing compounds. Further work will include application of the model to investigate greenhouse gas mitigation options, and evaluation against independent data for the conditions for which it will be applied.

To document

Abstract

Nature in Norway (NiN) has detailed ecological definitions of a high number of ecosystem units, but its applicability in practical vegetation mapping is unknown because it was not designed with a specific mapping method in mind. To investigate this further, two methods for mapping – 3D aerial photographic interpretation of colour infrared photos and field survey – were used to map comparable sites. The classification accuracy of each method was evaluated using 160 randomly distributed plots. The results show an overall classification accuracy of 62.5% for 3D aerial photographic interpretation and 82.5% for field survey. However, the accuracy varied for the ecosystem units mapped. The classification accuracy of ecosystem units in acidic, dry and open terrain was similar for both methods, whereas classification accuracy of calcareous units was highest using field survey. The mapping progress using 3D aerial photographic interpretation was more than two times faster than that of field survey. Based on the results, the authors recommend a method combining 3D aerial photographic interpretation and field survey to achieve effectively accurate mapping in practical applications of the NiN system.

To document

Abstract

Wheat dwarf virus (WDV), a mastrevirus transmitted by the leafhopper Psammotettix alienus, causes a severe disease in cereal crops. Typical symptoms of wheat plants infected by WDV are yellowing and severe dwarfing. In this present study, RNA-Seq was used to perform gene expression analysis in wheat plants in response to WDV infection. Comparative transcriptome analysis indicated that a total of 1042 differentially expressed genes (DEGs) were identified in the comparison between mock and WDV-inoculated wheat plants. Genomes ontology (GO) annotation revealed a number of DEGs associated with different biological processes, such as phytohormone metabolism, photosynthesis, DNA metabolic process, response to biotic stimulus and defense response. Among these, DEGs involved in phytohormone and photosynthesis metabolism and response pathways were further enriched and analyzed, which indicated that hormone biosynthesis, signaling and chloroplast photosynthesis-related genes might play an important role in symptom development after WDV infection. These results illustrate the dynamic nature of the wheat-WDV interaction at the transcriptome level and confirm that symptom development is a complex process, providing a solid foundation to elucidate the pathogenesis of WDV.