Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2026
Authors
Seth J. Dorman Hannah M. Rivedal David J. Maliszewski Todd N. Temple Casey Cruse Jing Zhou Pete A. Berry Robert J. Starchvick Chloe Oshiro Nicole P. AndersonAbstract
Epidemiology and management of aphid-transmitted yellow dwarf viruses (YDVs) have received international attention in small grain crops over the past century. However, focused research regarding YDV management in grass seed production systems, including perennial ryegrass (Lolium perenne L.), is limited. An integrated pest management program is needed to reduce the impact of the aphid-YDV complex in perennial grass seed crops. The objectives of the study were to evaluate the effects of nitrogen fertilizer rate, and the timing and frequency of foliar insecticide applications on aphid abundance, YDV disease incidence, and seed yield in two perennial ryegrass cultivars in small-plot field trials from 2021 to 2024. Trade-offs in economic returns across treatment combinations and YDV detection using remote sensing were also observed. Aphid and natural predator densities varied across foliar insecticide treatments. The high nitrogen rate increased YDV incidence across three field seasons in both cultivars. Seed yield and economic returns were greatest for the less susceptible cultivar when fully protected with one insecticide treatment per season (autumn, spring, and summer). A higher-than-recommended nitrogen rate did not increase seed yield across treatment combinations in first-year stands; however, an increase was observed in second- and third-year stands when YDV infection averaged >50%. Selecting resistant cultivars and reducing aphid populations during the autumn and spring aphid flights is critical for maximizing seed yield potential in perennial ryegrass. Furthermore, a lower nitrogen rate can be used in first-year stands to save input costs with no impact on seed yield potential.
Authors
Johannes BreidenbachAbstract
No abstract has been registered
Authors
Sissel Hansen Synnøve Rivedal Samson Øpstad Johannes Deelstra Trond Børresen Torfinn Torp Peter DörschAbstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
The soil-borne oomycete Phytophthora cactorum causes crown rot, a major disease of the allo-octoploid strawberry (Fragaria × ananassa Duch., 2n = 8× = 56) that limits cultivation worldwide. Resistance to P. cactorum is a highly desirable trait but is typically quantitative and moderately heritable. A better understanding of the genetic basis of resistance to crown rot is essential for developing durable crown rot-resistant cultivars. We conducted a genome-wide association study (GWAS) using multi-locus models on 100 wild strawberry accessions from South and North America. The accessions were genotyped using the Axiom™ 50 K strawberry SNP array and mapped to the F. × ananassa cv. Royal Royce v. 1.0 reference genome. Testing for resistance to P. cactorum revealed a wide range of phenotypes. A single genetic marker, AX-184528282, located on chromosome 7B, was strongly associated with resistance to P. cactorum and explained 53% of the observed phenotypic variation. This marker was present in several highly resistant exotic Fragaria accessions that represent potential donors for introgression of favorable alleles into modern strawberry cultivars. In addition, several strong candidate resistance genes were identified within the 2 Mb genomic region surrounding the significant marker. This study advances understanding of resistance to P. cactorum in strawberry and identifies genetic resources that can accelerate the development of crown rot-resistant cultivars through marker-assisted breeding.
Abstract
No abstract has been registered
Authors
Nhat Strøm-Andersen Julia Szulecka Markus M. Bugge Ellen-Marie ForsbergAbstract
The sustainability transitions literature suggests that individual firms struggle to move toward sustainability unless the broader socio-economic system also evolves. Despite firms' willingness to change, existing systemic challenges often impede their progress. This paper employs paradox theory to address this struggle and examines how firms balance economic and societal concerns in their transition from business thinking to sustainability thinking. Based on a qualitative case study of the food industry's collaboration initiatives on food waste reduction and prevention in Norway, the study identifies the systemic challenges and sustainability paradoxes that the industry faces. We find that the firms' efforts to reduce food waste collide with established food industry agreements, standards, business strategies, regulations, and agricultural policies, impeding a systemic and structural transformation of the industry. The paper discusses how the food industry may navigate these challenges collectively and draws implications for the sustainability transitions literature. Primarily, the conclusions signal a need for governance and incentive structures at the system level beyond the action space of individual firms, and secondarily, illustrate how such governance approaches to sustainability transitions are sector-specific and geographically embedded.
Abstract
No abstract has been registered
Authors
Dafni Foti Stephen Amiandamhen Eleni Voulgaridou Elias Voulgaridis Costas Passialis Stergios AdamopoulosAbstract
Abstract This study investigated the incorporation of various waste materials including wastepaper, Tetra Pak, wood chips and scrap tire fluff into flue gas desulfurization (FGD) gypsum and cement mortar matrices to produce sustainable composite materials. Four distinct composite types based on the waste materials were developed and evaluated for selected properties including thermal and acoustic insulation. The proportion of the waste materials was varied between 10 and 40 vol% of the base matrix. The compressive strength of the filled gypsum composites was in the range of 4.17–10.39 N/mm² while the pure gypsum was 11.38 N/mm². The addition of the wastes in gypsum composites reduced compressive strength by about 10% for the best recipe and as large as 60% for the worst combination. However, the measured strength still exceeds the strength of typical gypsum wallboard with a compressive strength of about 3–4 N/mm² for whole-board crushing tests and it is much lower for point loads. The normal-incidence sound absorption coefficient indicated that the waste-filled samples absorbed around 80% of the incident sound energy between 2000 and 3000 Hz, comparable to some commercial acoustic foams. The results highlight the potential of utilising these waste-based composites in environmentally friendly construction applications. Depending on the waste type and matrix used, the results revealed trade-offs between multi-functional performance and sustainability benefits.
Abstract
Potato field management in Europe is already optimized for high production and tuber quality; however, numerous environmental challenges remain if the industry is to achieve “green economy” targets, such as less resources utilized, and less nitrate leached to the environment. Strategic co-scheduling irrigation and nitrogen (N) fertilization might increase resource use efficiency while minimizing reactive losses such as nitrate leaching. This study aimed to quantify the combined effect of irrigation and N fertilization on potato production, growth, and resource use efficiencies. A field experiment was conducted from 2017 to 2019 on a coarse sandy soil in Denmark, with a drought event occurring in 2018. Full (Ifull, maximized), deficit (Idef, 70–80 % of Ifull) and low irrigation treatments (Ilow, minimized amount to keep crop survival), each under full (Nfull, maximized) and variable (Nvar, variable amount according to the crops’ needs) N fertilization were applied. The analyses results show that Ilow limited potato growth under a drought-heat event; otherwise, potato growth was comparable between Ifull and Idef treatments, with 31–32 % higher irrigation efficiency (IE) under Idef than under Ifull. Nitrate leaching was variable and not significantly different among the treatments, being in general 9–13 % lower under Idef in absolute terms than under Ifull. Unexpectedly, outcomes from Nvar were statistically lower compared to those from Nfull. Radiation use efficiencies (RUEs) from Ilow and Nvar were significantly lower than from Ifull and Idef (14–19 %), and from Nfull (9–11 %). N use efficiencies (NUE) were comparable between N fertilization treatments but significantly different among different irrigation treatments. Overall, this study confirms that Idef is the best irrigation strategy. Future efforts should focus on developing improved approaches for detecting in-season crop N status and further quantifying N requirements, as well as promoting the co-scheduled management of irrigation and N fertilization. Remote sensing approaches have great potential to assist with this.