Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2025

2024

To document

Abstract

In this study, 200 Norwegian dairy farms were analyzed over three years to compare greenhouse gas emissions, nitrogen (N) intensity, gross margin, and land use occupation between organically and conventionally managed farms. Conventionally managed farm groups were constructed based on propensity matching, selecting the closest counterparts to organically managed farms (n=15). These groups, each containing 15 farms, were differentiated by an increasing number of matching variables. The first group was matched based on geographical location, milk quota, and milking cow units. In the second match, the proportion of milking cows in the total cattle herd was added, and in the third, the ratio of milk delivered to milk produced and concentrate usage per dairy cow were included. The analysis showed that the conventionally managed farms (n=185) had higher greenhouse gas emissions (1.42 vs 0.98 kg CO2 per 2.78 MJ of edible energy from milk and meat, calculated as GWP100-AR4) and higher N intensity (6.9 vs 5.0 kg N input per kg N output) compared to the organic farms (N=15). When comparing emissions per kg of energy-corrected milk (ECM) delivered, conventional farms also emitted more CO2 (1.07 vs 0.8 kg CO2 per kg ECM). Furthermore, conventionally managed farms showed lower gross margins both in terms of NOK per 2.78 MJ edible energy delivered (5.8 vs 6.5 NOK) and per milking cow unit (30 100 vs 34 400 NOK), and they used less land (2.9 vs 3.6 m² per 2.78 MJ edible energy delivered) compared to organic farms. No differences were observed among the three conventionally managed groups in terms of emissions, N intensity, land use occupation, and gross margin.

To document

Abstract

Six cattle breeds native to Norway, have for almost half a century been at risk of extinction. Due to their small population sizes, they have hardly been improved by breeding for many decades. Still, the endangered breeds represent a source of genetic diversity with special milk qualities compared to the modern breed, Norwegian red (NRF). This study reports for the first time a detailed overview of their milk composition. Milk from seven native breeds, in total 200 individuals, were included in the study. Rare genetic variants of αs1-and αs2-casein, and β-casein A1 and κ-casein B were more prevalent in milk form the endangered breeds compared to NRF. Moreover, milk from these six breeds showed better renneting properties and lower incidences of non-coagulating milk, compared to the NRF milk, which showed better acid coagulation properties. This study shows the potential for native breeds in small-scale production of high-quality rennet cheeses.

Abstract

Raman spectroscopy provides detailed information about the molecular composition of a sample. The classical identification of components in a multi-component sample typically involves comparing the preprocessed spectrum with a known reference stored in a database using various spectral matching or machine-learning techniques or relies on universal models based on a two-step analysis including first, the component identification, and then the decomposition of the mixed signal. However, although large databases and universal models cover a wide range of target materials, they may be not optimized to the variability required in a specific application. In this study, we propose a single-step method using deep learning (DL) modeling to decompose a simulated mixture of real measurements of Raman scattering into relevant individual components regardless of noise, baseline and the number of components involved and quantify their ratios. We hypothesize that training a custom DL model for applications with a fixed set of expected components may yield better results than applying a universal quantification model. To test this hypothesis, we simulated 12,000 Raman spectra by assigning random ratios to each component spectrum within a library containing 13 measured spectra of organic solvent samples. One of the DL methods, a fully connected network (FCN), was designed to work on the raw spectra directly and output the contribution of each component of the library to the input spectrum in form of a component ratio. The developed model was evaluated on 3600 testing spectra, which were simulated similarly to the training dataset. The average component identification accuracy of the FCN was 99.7%, which was significantly higher than that of the universal custom trained DeepRaman model, which was 83.1%. The average mean absolute error for component ratio quantification was 0.000562, over one order of magnitude smaller than that of a well-established non-negative elastic net (NN-EN), which was 0.00677. The predicted non-zero ratio values were further used for component identification. Under the assumption that the components of a mixture are from a fixed library, the proposed method preprocesses and decomposes the raw data in a single step, quantifying every component in a multicomponent mixture, accurately. Notably, the single-step FCN approach has not been implemented in the previously reported DL studies.

To document

Abstract

Life history traits have been studied under various environmental factors, but the ability to combine them into a simple function to assess pest response to climate is still lacking complete understanding. This study proposed a risk index derived by combining development, mortality, and fertility rates from a stage-structured dynamic mathematical model. The first part presents the theoretical framework behind the risk index. The second part of the study is concerned with the application of the index in two case studies of major economic pest: the brown planthopper (Nilaparvata lugens) and the spotted wing drosophila (Drosophila suzukii), pests of rice crops and soft fruits, respectively. The mathematical calculations provided a single function composed of the main thermal biodemographic rates. This function has a threshold value that determines the possibility of population increase as a function of temperature. The tests carried out on the two pest species showed the capability of the index to describe the range of favourable conditions. With this approach, we were able to identify areas where pests are tolerant to climatic conditions and to project them on a geospatial risk map. The theoretical background developed here provided a tool for understanding the biogeography of Nilaparvata lugens and Drosophila suzukii. It is flexible enough to deal with mathematically simple (N. lugens) and complex (D. Suzukii) case studies of crop insect pests. It produces biologically sound indices that behave like thermal performance curves. These theoretical results also provide a reasonable basis for addressing the challenge of pest management in the context of seasonal weather variations and climate change. This may help to improve monitoring and design management strategies to limit the spread of pests in invaded areas, as some non-invaded areas may be suitable for the species to develop.