Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2019

To document

Abstract

The notion of the Anthropocene does not fit well into the frame of scientific disciplines. The proposed onset of a new geological epoch has become closely linked with human history and with notions such as purposeful human actions. Purposefulness, however, is also subject to interpretation in the humanities and does not fit into analytical methods in Earth sciences. Scholars have taken up this challenge and engage with Earth scientists in public discourse on the Anthropocene. Due to the lack of a common frame of reference, discussions suffer from incompatible abstractions, notions, methods and results. Here, we propose an abstract model-framework facilitating communication between Earth scientists and scholars. In Earth sciences, models are often employed to provide a representation of an independent reality which imposes limits to growth. In the humanities, self-reference and reflexivity of modernity at all scales including the globe becomes a key issue. In the former view models can be decomposed and locally tested, in the latter models and concepts involving human action need to be considered in all their contextual and semantic relations. Typically, such concepts, for example in anthropology, do not come in a mathematical language. Nevertheless, we suggest that a common reference can be sought in an abstract model language, rather than in realistic models. Category theory and formal notions developed in computer science may provide such an abstract framework to accommodate the apparently incompatible views of models and concepts, which are considered as successful by their respective home disciplines. Diverse models such as examples from game theory (economics), from dynamic system theory (Earth science) and from a classification of ethnocosmologies (anthropology) can be formulated as different instances within a joint and abstract framework. Such a framework allows to investigate implications of the Anthropocene for logical similarities with past environmental events by seeking historical analogies (for example with the great oxygenation event) or formulating consistency requirements for the future (for example by defining sustainability). The prize for the common basis is a strict ‘epistemic hygiene’, avoiding most ontological assumptions and criticisms which often appear as dear to Earth scientists and scholars, but which may prevent a more fruitful exchange on an urgent interdisciplinary topic

To document

Abstract

Crop wild relatives (CWR) can provide one solution to future challenges on food security, sustainable agriculture and adaptation to climate change. Diversity found in CWR can be essential for adapting crops to these new demands. Since the need to improve in situ conservation of CWR has been recognized by the Convention on Biological Diversity (CBD) (2010) and the Global Strategy for Plant Conservation (2011–2020), it is important to develop ways to safeguard these important genetic resources. The Nordic flora includes many species related to food, forage and other crop groups, but little has been done to systematically secure these important wild resources. A Nordic regional approach to CWR conservation planning provided opportunities to network, find synergies, share knowledge, plan the conservation and give policy inputs on a regional level. A comprehensive CWR checklist for the Nordic region was generated and then prioritized by socio-economic value and utilization potential. Nordic CWR checklist was formed of 2553 taxa related to crop plants. Out of these, 114 taxa including 83 species were prioritized representing vegetable, cereal, fruit, berry, nut and forage crop groups. The in situ conservation planning of the priority CWR included ecogeographic and complementarity analyses to identify a potential network of genetic reserve sites in the region. Altogether 971,633 occurrence records of the priority species were analysed. A minimum number of sites within and outside existing conservation areas were identified that had the potential to support a maximum number of target species of maximum intraspecific diversity.

Abstract

Agroforestry can be defined as sustainable and multifunctional land-use systems where trees are managed together with agricultural crops or livestock on the same piece of land. In the northern periphery area, agroforestry has a long history with woodland grazing, reindeer husbandry and gathering of different non-wood forest resources as herbs, mushrooms and berries. Traditional agroforestry has gradually disappeared during the 20th century with the intensification of agriculture and forestry. Currently agroforestry systems are gaining new interest, not only from farmers but also from politicians, as this practice can possibly contribute to a more sustainable way of agricultural production. In the northern periphery area, the benefits of agroforestry practices can be manifold not only promoting traditional practices, but also novel systems with the use of new technology. In addition, agroforestry has environmental benefits as a method for conservation and enhancement of biodiversity, improved nutrient cycling, and water quality. Soil humus layer will also increase with several agroforestry systems leading to carbon sequestration. Here we present an overview of agroforestry practices in the Nordic countries and the use of non-wood forest resources with the emphasis on wild berries.

To document

Abstract

Sorption could be a way to concentrate nutrients in diluted waste streams to bring more nutrients back to agriculture. However, the sorbed nutrients must be plant available. The aim of this work was to investigate how plant available nitrogen (N) added sorbed to zeolite and is compared to conventionally added N. First, 15N labelled ammonium was sorbed to a sorbent, zeolite, in an aqueous solution. Then, the fertilizer effect was compared to the ammonium fertilizer and added the conventional way, with and without zeolite. A pot experiment with two soil types (chernozem and sandy soil) and wheat as test crop was used. Results indicated that the fertilizer effect of sorbed ammonium in the first growth cycle is about 50% of ammonium added conventionally. The sorbent itself had a positive effect in sandy soil, but not in chernozem. N uptake without added N was higher in chernozem than in sandy soil and more N from fertilizer was left in the soil after the experiment in the chernozem than in the sandy soil. In conclusion, ammonium added sorbed is plant available to some extent, but less so than conventionally added ammonium.