Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2025

Sammendrag

Funn fra PROLAND: Soppmidler og mikroplast i jorda Forskerne i PROLAND-prosjektet har undersøkt hva som skjer når soppmidler enten adsorberes på bionedbrytbar plastfolie som blir pløyd ned i jorda, kontra at de blandes direkte i jorda. Har dette noe å si for nedbrytningen av soppmidlene? Forskerne har fulgt nedbrytningsforløpet til tre soppmidler tillatt i norsk landbruk, og har nå svaret… Vi får også et unikt innblikk i hvordan meitemarken – naturens egen jordbearbeider – påvirkes av mikroplast. Hvor lang tid tar det for eksempel før en mikroplastpartikkel passerer gjennom meitemarkens tarm? Temaet er kanskje lite delikat på selveste valentinsdagen, men passer utmerket for oss som er nysgjerrige på mikroplastens mobilitet i jorda.

Sammendrag

NIBIO har kartlagt naturtyper og arter i tre verneområder i Innlandet etter kartleggingsmetodikken Natur i Norge (NiN). Rapporten oppsummerer og utdyper kartleggingens kartobjekter og egenskapsdata som har blitt registrert og rapportert via NiNapp, samt artsfunn. Rapporten inneholder generelle faglige vurderinger, eventuelle observerte forvaltningsrelevante problemstillinger, praktiske utfordringer i felt, eventuell usikkerhet knyttet til kartleggingsenheter og viser noen utvalgte bilder for verneområdene.

Sammendrag

In terrestrial ecosystems, forest stands are the primary drivers of atmospheric moisture and local climate regulation, making the quantification of transpiration (T) at the stand level both highly relevant and scientifically important. Stand-level T quantification complements evapotranspiration monitoring by eddy-covariance systems, providing valuable insight into the water use efficiency of forested ecosystems in addition to serving as important inputs for the calibration and validation of global transpiration monitoring products based on satellite observations. Stand level T estimates are typically obtained by scaling up individual tree estimates of water movement within the xylem – or sap flow. This movement affects the radius of a tree stem, whose fluctuations over the diel cycle provide pertinent information about tree water relations which can be readily detected by point (or precision) dendrometers. While sap flow measurements have greatly advanced our understanding of water consumption (T) at the level of individual trees, deploying conventional sap flow monitoring equipment to quantify T at the level of entire forested stands (or ecosystems) can quickly become costly since sap flow measurements from many trees are required to reduce the uncertainty of the upscaling. Using a boreal old-growth Norway spruce stand at an ICOS site in Southern Norway as a case study, we assess the potential of augmenting conventional sap flow monitoring systems with sap flow modeling informed by point dendrometer measurements to reduce the uncertainty of stand level T estimation at the daily resolution. We test the hypothesis that the uncertainty reduction afforded by a boosted tree sample size more than offsets the propagation of uncertainty originating from the point dendrometer-based sap flow estimates.

Sammendrag

Climatic drought and changes in precipitation patterns are key features of the ongoing and predicted climatic changes in northern latitudes such as the boreal forest of Norway. Recent droughts highlight on the possible difficult future of spruce forests in southern Norway. To better understand and monitor these forests under a more extreme climate, it is crucial to gain a better understanding of the water relations of spruce trees across forest stands. Sap flow sensors are typically used for directly measuring the water demands for transpiration in individual trees. There are however limitations to their use in examining the hydraulic and physiological responses to extreme water supply variability: i) manufactured high-resolution sensors such as those following the Heat Ratio Method (HRM) or Heat Field Deformation (HFD) are expensive, limiting their deployment to a few trees in a stand, and ii) the sap flow sensors only measure the movement of water within the active sapwood, not accessing other physiological mechanisms and responses (radial growth, water storage) associated with stress response. Point dendrometers have become increasingly used, monitoring sub-daily stem size fluctuations resulting from both seasonal patterns of radial growth increment and the dynamics of plant tissue water balance. Manufactured point dendrometers are much cheaper to buy and easier to install and maintain than manufactured sap flow sensors. They can therefore be much more extensively deployed across forest stands. We aimed to analyse the relationship between sub-daily stem diameter changes and sap flow using point dendrometers and HRM sap flow sensors installed in a Norway spruce forest located 50 km north of Oslo, Norway. We linked these relationships with individual tree physical attributes, meteorology and soil climate over two growing seasons in 2022 and 2023. Our goal was to assess whether a predictive model of sap flow could be built from measured diameter changes, tree properties and climate, to ultimately reduce the uncertainty of stand level transpiration estimation at the daily resolution across entire forest stands.

Til dokument

Sammendrag

Digestate from the biogas facility of IVAR at Grødaland, Rogaland County was tested for fertilizer effects in the production of turf gras in a pot experiment at NIBIO Særheim. Digestate was applied to the pot soil, with quantities equivalent to 0, 5, 10 and 20 kg N/daa and compared to mineral fertilizers with the same N-quantities. Germination of the gras seeds was not affected by neither digestate nor mineral fertilizers. The biomass production was largest when fertilized with mineral fertilizer, which increased the gras growth also when 5 kg N/daa was applied, with maximal yield reached at 10 kg N/daa. Digestate increased biomass production significantly, with approximately the same biomass increase from levels of 5 to 10 and to 20 kg N/daa. The digestate had a lower nitrogen use efficiency than mineral fertilizers, due to lack of complete mineralization, or delayed mineralization compared to the time of the plant’s needs for N.