Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2023

Sammendrag

Phytophthora cactorum has two distinct pathotypes that cause crown rot and leather rot in strawberry (Fragaria × ananassa). Strains of the crown rot pathotype can infect both the rhizome (crown) and fruit tissues, while strains of the leather rot pathotype can only infect the fruits of strawberry. The genome of a highly virulent crown rot strain, a low virulent crown rot strain, and three leather rot strains were sequenced using PacBio high fidelity (HiFi) long read sequencing. The reads were de novo assembled to 66.4–67.6 megabases genomes in 178–204 contigs, with N50 values ranging from 892 to 1,036 kilobases. The total number of predicted complete genes in the five P. cactorum genomes ranged from 17,286 to 17,398. Orthology analysis identified a core secretome of 8,238 genes. Comparative genomic analysis revealed differences in the composition of potential virulence effectors, such as putative RxLR and Crinklers, between the crown rot and the leather rot pathotypes. Insertions, deletions, and amino acid substitutions were detected in genes encoding putative elicitors such as beta elicitin and cellulose-binding domain proteins from the leather rot strains compared to the highly virulent crown rot strain, suggesting a potential mechanism for the crown rot strain to escape host recognition during compatible interaction with strawberry. The results presented here highlight several effectors that may facilitate the tissue-specific colonization of P. cactorum in strawberry.

Til dokument

Sammendrag

Stress can have long-lasting impacts on plants. Here we report the long-term effects of the stress hormone jasmonic acid (JA) on the defence phenotype, transcriptome and DNA methylome of Arabidopsis. Three weeks after transient JA signalling, 5-week-old plants retained induced resistance (IR) against herbivory but showed increased susceptibility to pathogens. Transcriptome analysis revealed long-term priming and/or upregulation of JA-dependent defence genes but repression of ethylene- and salicylic acid-dependent genes. Long-term JA-IR was associated with shifts in glucosinolate composition and required MYC2/3/4 transcription factors, RNA-directed DNA methylation, the DNA demethylase ROS1 and the small RNA (sRNA)-binding protein AGO1. Although methylome analysis did not reveal consistent changes in DNA methylation near MYC2/3/4-controlled genes, JA-treated plants were specifically enriched with hypomethylated ATREP2 transposable elements (TEs). Epigenomic characterization of mutants and transgenic lines revealed that ATREP2 TEs are regulated by RdDM and ROS1 and produce 21 nt sRNAs that bind to nuclear AGO1. Since ATREP2 TEs are enriched with sequences from IR-related defence genes, our results suggest that AGO1-associated sRNAs from hypomethylated ATREP2 TEs trans-regulate long-lasting memory of JA-dependent immunity.

Sammendrag

Purpose of Review Forestry in northern temperate and boreal regions relies heavily on conifers. Rapid climate change and associated increases in adverse growing conditions predispose conifers to pathogens and pests. The much longer generation time and presumably, therefore, lower adaptive capacity of conifers relative to their native or non-native biotic stressors may have devastating consequences. We provide an updated overview of conifer defences underlying pathogen and pest resistance and discuss how defence traits can be used in tree breeding and forest management to improve resistance. Recent Findings Breeding of more resilient and stress-resistant trees will benefit from new genomic tools, such as genotyping arrays with increased genomic coverage, which will aid in genomic and relationship-based selection strategies. However, to successfully increase the resilience of conifer forests, improved genetic materials from breeding programs must be combined with more flexible and site-specific adaptive forest management. Summary Successful breeding programs to improve conifer resistance to pathogens and pests provide hope as well as valuable lessons: with a coordinated and sustained effort, increased resistance can be achieved. However, mechanisms underlying resistance against one stressor, even if involving many genes, may not provide any protection against other sympatric stressors. To maintain the adaptive capacity of conifer forests, it is important to keep high genetic diversity in the tree breeding programs. Choosing forest management options that include diversification of tree-species and forest structure and are coupled with the use of genetically improved plants and assisted migration is a proactive measure to increase forest resistance and resilience to foreseen and unanticipated biotic stressors in a changing climate.