Biografi

Jeg forsker på samspillet mellom insekter og planter og særlig hvordan bartrær forsvarer seg mot barkbiller og blåvedsopp. Jeg samarbeider ofte med kjemikere, molekylærbiologer og økologer ved NIBIO og andre institusjoner i inn- og utland. Metodene vi bruker spenner fra feltforsøk til kjemisk økologi og molekylærbiologi. Jeg har jobbet i NIBIO (tidligere Skogforsk, Skog og landskap) siden 1992. Min utdanning har jeg fra Universitetet i Oslo, der jeg ble Cand. scient. i økologi/entomologi i 1992 og Dr. Scient. i skogentomologi i 1996. Jeg har en bistilling (20 %) som professor II ved Norges miljø- og biovitenskapelige universitet (NMBU), der jeg underviser i skogentomologi. Fra 2018 er jeg også medlem av Vitenskapskomiteen for mat og miljø, faggruppe plantehelse.

Les mer
Til dokument

Sammendrag

Convergent evolution of semiochemical use in organisms from different Kingdoms is a rarely described phenomenon. Tree-killing bark beetles vector numerous symbiotic blue-stain fungi that help the beetles colonize healthy trees. Here we show for the first time that some of these fungi are able to biosynthesize bicyclic ketals that are pheromones and other semiochemicals of bark beetles. Volatile emissions of five common bark beetle symbionts were investigated by gas chromatography-mass spectrometry. When grown on fresh Norway spruce bark the fungi emitted three well-known bark beetle aggregation pheromones and semiochemicals (exo-brevicomin, endo-brevicomin and trans-conophthorin) and two structurally related semiochemical candidates (exo-1,3-dimethyl-2,9-dioxabicyclo[3.3.1]nonane and endo-1,3-dimethyl-2,9-dioxabicyclo[3.3.1]nonane) that elicited electroantennogram responses in the spruce bark beetle Ips typographus. When grown on malt agar with 13C D-Glucose, the fungus Grosmannia europhioides incorporated 13C into exo-brevicomin and trans-conophthorin. The enantiomeric compositions of the fungus-produced ketals closely matched those previously reported from bark beetles. The production of structurally complex bark beetle pheromones by symbiotic fungi indicates cross-kingdom convergent evolution of signal use in this system. This signaling is susceptible to disruption, providing potential new targets for pest control in conifer forests and plantations.

Sammendrag

1 The European spruce bark beetle Ips typographus is a damaging pest on spruce in Europe. Beetle interactions with tree species originating outside the natural range of the beetle are largely unknown and may be unpredictable because trees without a co-evolutionary history with the beetle may lack effective defences. 2 The terpenoid composition and breeding suitability for I. typographus of the historic host Norway spruce Picea abies were compared with two evolutionary naïve spruces of North American origin that are extensively planted in North-West Europe: Sitka spruce Picea sitchensis and Lutz spruce Picea glauca x lutzii. 3 The bark of all three species had a similar chemical composition and similar levels of total constitutive terpenoids, although Norway spruce had higher total induced terpenoid levels. 4 Beetles tunnelling in the three spruce species produced similar amounts of aggregation pheromone. Controlled breeding experiments showed that I. typographus could produce offspring in all three species, with a similar offspring length and weight across species. However, total offspring production was much lower in Sitka and Lutz spruce. 5 Overall, the results of the present study suggest that I. typographus will be able to colonize Sitka and Lutz spruce in European plantations and in native spruce forests in North America if introduced there.

Til dokument

Sammendrag

The purpose of this study is to increase the basic understanding of outbreak dynamics in order to improve the management of bark beetle outbreaks. The spruce bark beetle Ips typographus is a major disturbance agent of European forests and is the continent’s most economically and environmentally damaging bark beetle. Outbreaks of the spruce bark beetle are often triggered by large windfall episodes, and we have utilized a unique opportunity to study a Slovakian outbreak where little salvage logging was performed in some areas after a 2.5 million m3 storm-felling in 2004. Our analyses focused on the first five years after the windfall, and we used a combination of empirical data and simulation models to understand the spatial patterns of beetle-killed forest patches developing during the outbreak. The univoltine beetle population used an increasing proportion of the windfelled trees during the two first seasons after the storm, but from the third season onwards our comparisons of inter-patch distance distributions indicated a transition from beetle production largely in windfall areas to a self-sustaining outbreak with infestation patches developing independently of the windthrows. The size of new infestation patches formed after this transition was modeled as a function of beetle pressure, estimated by the proportion of a circle area surrounding new patches that was covered by infestation patches the previous year. Our model results of patch size distribution did not correspond well with the empirical data if patch formation was modeled as a pure dispersal–diffusion process. However, beetle aggregation on individual trees appears to be important for patch development, since good correspondence with empirical data was found when beetle aggregation was incorporated in the modeled dispersal process. The strength of correspondence between the beetle aggregation model and the empirical data varied with the density of aggregation trees in the modeled landscape, and reached a maximum of 83% for a density of three aggregation trees per infestation patch. Our results suggest that efficient removal of windfelled trees up until the start of the second summer after a major windfall is important to avoid a transition into a patch-driven bark beetle outbreak that is very difficult to manage. Our results also indicate that the outcome of a patch-driven outbreak is difficult to predict, since the development of new infestation patches is not a simple function of beetle pressure but is also affected by beetle behavior and local forest conditions.

Sammendrag

Climate change is already reducing carbon sequestration in Central European forests dramatically through extensive droughts and bark beetle outbreaks. Further warming may threaten the enormous carbon reservoirs in the boreal forests in northern Europe unless disturbance risks can be reduced by adaptive forest management. The European spruce bark beetle (Ips typographus) is a major natural disturbance agent in spruce-dominated forests and can overwhelm the defences of healthy trees through pheromone-coordinated mass-attacks. We used an extensive dataset of bark beetle trap counts to quantify how climatic and management-related factors influence bark beetle population sizes in boreal forests. Trap data were collected during a period without outbreaks and can thus identify mechanisms that drive populations towards outbreak thresholds. The most significant predictors of bark beetle population size were the volume of mature spruce, the extent of newly exposed clearcut edges, temperature and soil moisture. For clearcut edge, temperature and soil moisture, a 3-year time lag produced the best model fit. We demonstrate how a model incorporating the most significant predictors, with a time lag, can be a useful management tool by allowing spatial prediction of future beetle population sizes. Synthesis and Applications: Some of the population drivers identified here, i,e., spruce volume and clearcut edges, can be targeted by adaptive management measures to reduce the risk of future bark beetle outbreaks. Implementing such measures may help preserve future carbon sequestration of European boreal forests.