Andre van Eerde
Forsker
Forfattere
Hang Su Andre van Eerde Espen Rimstad Ralph Bock Norica Branza-Nichita Igor A. Yakovlev Jihong Liu ClarkeSammendrag
Det er ikke registrert sammendrag
Forfattere
Andre van Eerde Aniko Varnai Yanliang Wang Lisa Paruch John-Kristian Jameson Fen Qiao Hans Geir Eiken Hang Su Vincent Eijsink Jihong Liu ClarkeSammendrag
Giant panda could have bamboo as their exclusive diet for about 2 million years because of the contribution of numerous enzymes produced by their gut bacteria, for instance laccases. Laccases are blue multi-copper oxidases that catalyze the oxidation of a broad spectrum of phenolic and aromatic compounds with water as the only byproduct. As a “green enzyme,” laccases have potential in industrial applications, for example, when dealing with degradation of recalcitrant biopolymers, such as lignin. In the current study, a bacterial laccase, Lac51, originating from Pseudomonas putida and identified in the gut microbiome of the giant panda’s gut was transiently expressed in the non-food plant Nicotiana benthamiana and characterized. Our results show that recombinant Lac51 exhibits bacterial laccase properties, with optimal pH and temperature at 7–8 and 40°C, respectively, when using syringaldazine as substrate. Moreover, we demonstrate the functional capability of the plant expressed Lac51 to oxidize lignin using selected lignin monomers that serve as substrates of Lac51. In summary, our study demonstrates the potential of green and non-food plants as a viable enzyme production platform for bacterial laccases. This result enriches our understanding of plant-made enzymes, as, to our knowledge, Lac51 is the first functional recombinant laccase produced in plants.
Forfattere
Hang Su Andre van Eerde Hege Særvold Steen Inger Heldal Sissel Haugslien Irene Ørpetveit Stefanie Caroline Wüstner Makoto Inami Marie Løvoll Espen Rimstad Jihong Liu ClarkeSammendrag
Cardiomyopathy syndrome (CMS) is a severe cardiac disease occurring in the grow-out sea phase of farmed Atlantic salmon with approximately 100 outbreaks annually in Norway. Piscine myocarditis virus (PMCV) is believed to be the causative agent of CMS. There is no vaccine available to control CMS, partially because PMCV withstands propagation in known cell cultures. In the present study, we selected the putative capsid protein of PMCV as the candidate antigen for immunization experiments and produced it in the plant Nicotiana benthamiana by transient expression. The recombinant PMCV antigen formed virus-like particles (VLPs). To evaluate the efficacy of the plant made VLP vaccine, a PMCV infection model was established. In an experimental salmon vaccination trial, the VLP vaccine triggered innate immunity, and indicative but not significant inhibition of viral replication in heart, spleen and kidney tissues was observed. Similarly, a reduction of inflammatory lesions in cardiomyocytes and subendocardial infiltration by mononuclear leukocytes were observed. Therefore, there was no difference in efficacy or immune response observed post the plant made PMCV VLP antigen vaccination. Taken together, this study has demonstrated that plant made VLP antigens should be investigated further as a possible platform for the development of PMCV antigens for a CMS vaccine.
Forfattere
Mihaela-Olivia Dobrica Andre van Eerde Catalin Tucureanu Adrian Onu Lisa Paruch Iuliana Caras Ene Vlase Hege Særvold Steen Sissel Haugslien Dominic Alonzi Nicole Zitzmann Ralph Bock Jean Dubuisson Costin-Ioan Popescu Crina Stavaru Jihong Liu Clarke Norica Branza-NichitaSammendrag
Det er ikke registrert sammendrag
Sammendrag
Aquaculture has undergone rapid development in the past decades. It provides a large part of high-quality protein food for humans, and thus, a sustainable aquaculture industry is of great importance for the worldwide food supply and economy. Along with the quick expansion of aquaculture, the high fish densities employed in fish farming increase the risks of outbreaks of a variety of aquatic diseases. Such diseases not only cause huge economic losses, but also lead to ecological hazards in terms of pathogen spread to marine ecosystems causing infection of wild fish and polluting the environment. Thus, fish health is essential for the aquaculture industry to be environmentally sustainable and a prerequisite for intensive aquaculture production globally. The wide use of antibiotics and drug residues has caused intensive pollution along with risks for food safety and increasing antimicrobial resistance. Vaccination is the most effective and environmentally friendly approach to battle infectious diseases in aquaculture with minimal ecological impact and is applicable to most species of farmed fish. However, there are only 34 fish vaccines commercially available globally to date, showing the urgent need for further development of fish vaccines to manage fish health and ensure food safety. Plant genetic engineering has been utilized to produce genetically modified crops with desirable characteristics and has also been used for vaccine production, with several advantages including cost-effectiveness, safety when compared with live virus vaccines, and plants being capable of carrying out posttranslational modifications that are similar to naturally occurring systems. So far, plant-derived vaccines, antibodies, and therapeutic proteins have been produced for human and animal health. However, the development of plant-made vaccines for animals, especially fish, is still lagging behind the development of human vaccines. The present review summarizes the development of fish vaccines currently utilized and the suitability of the plant-production platform for fish vaccine and then addresses considerations regarding fish vaccine production in plants. Developing fish vaccines by way of plant biotechnology are significant for the aquaculture industry, fish health management, food safety, and human health.
Forfattere
Ming Tian Xinmiao He Yanzhong Feng Wentao Wang Heshu Chen Ming Gong Di Liu Jihong Liu Clarke Andre van EerdeSammendrag
The demand for animal protein has increased considerably worldwide, especially in China, where large numbers of livestock and poultry are produced. Antibiotics have been widely applied to promote growth and prevent diseases. However, the overuse of antibiotics in animal feed has caused serious environmental and health risks, especially the wide spread of antimicrobial resistance (AMR), which seriously affects animal and human health, food safety, ecosystems, and the sustainable future development of animal protein production. Unfortunately, AMR has already become a worldwide challenge, so international cooperation is becoming more important for combatting it. China’s efforts and determination to restrict antibiotic usage through law enforcement and effective management are of significance. In this review, we address the pollution problems of antibiotics; in particular, the AMR in water, soil, and plants caused by livestock and poultry manure in China. The negative impact of widespread and intensive use of antibiotics in livestock production is discussed. To reduce and mitigate AMR problems, we emphasize in this review the development of antibiotic substitutes for the era of antibiotic prohibition.
Forfattere
Hong Yang Lisa Paruch Xunji Chen Andre van Eerde Hanne Skomedal Yanliang Wang Di Liu Jihong Liu ClarkeSammendrag
To meet increasing demand for animal protein, swine have been raised in large Chinese farms widely, using antibiotics as growth promoter. However, improper use of antibiotics has caused serious environmental and health risks, in particular Antimicrobial resistance (AMR). This paper reviews the consumption of antibiotics in swine production as well as AMR and the development of novel antibiotics or alternatives in China. The estimated application of antibiotics in animal production in China accounted for about 84240 tons in 2013. Overuse and abuse of antibiotics pose a great health risk to people through food-borne antibiotic residues and selection for antibiotic resistance. China unveiled a national plan to tackle antibiotic resistance in August 2016, but more support is needed for the development of new antibiotics or alternatives like plant extracts. Antibiotic resistance has been a major global challenge, so international collaboration between China and Europe is needed.
Forfattere
Andre van Eerde Aniko Varnai John-Kristian Jameson Lisa Paruch Anders Moen Jan Haug Anonsen Piotr Chylenski Hege Særvold Steen Inger Heldal Ralph Bock Vincent Eijsink Jihong Liu ClarkeSammendrag
Sustainable production of biofuels from lignocellulose feedstocks depends on cheap enzymes for degradation of such biomass. Plants offer a safe and cost‐effective production platform for biopharmaceuticals, vaccines and industrial enzymes boosting biomass conversion to biofuels. Production of intact and functional protein is a prerequisite for large‐scale protein production, and extensive host‐specific post‐translational modifications (PTMs) often affect the catalytic properties and stability of recombinant enzymes. Here we investigated the impact of plant PTMs on enzyme performance and stability of the major cellobiohydrolase TrCel7A from Trichoderma reesei, an industrially relevant enzyme. TrCel7A was produced in Nicotiana benthamiana using a vacuum‐based transient expression technology, and this recombinant enzyme (TrCel7Arec) was compared with the native fungal enzyme (TrCel7Anat) in terms of PTMs and catalytic activity on commercial and industrial substrates. We show that the N‐terminal glutamate of TrCel7Arec was correctly processed by N. benthamiana to a pyroglutamate, critical for protein structure, while the linker region of TrCel7Arec was vulnerable to proteolytic digestion during protein production due to the absence of O‐mannosylation in the plant host as compared with the native protein. In general, the purified full‐length TrCel7Arec had 25% lower catalytic activity than TrCel7Anat and impaired substrate‐binding properties, which can be attributed to larger N‐glycans and lack of O‐glycans in TrCel7Arec. All in all, our study reveals that the glycosylation machinery of N. benthamiana needs tailoring to optimize the production of efficient cellulases.
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Mihaela-Olivia Dobrica Catalin Lazar Lisa Paruch Andre van Eerde Jihong Liu Clarke Catalin Tucureanu Iuliana Caras Sonya Ciulean Adrian Onu Vlad Tofan Alexandru Branzan Stephan Urban Crina Stavaru Norica Branza-NichitaSammendrag
Hepatitis B Virus (HBV) infection can be prevented by vaccination. Vaccines containing the small (S)envelope protein are currently used in universal vaccination programs and achieve protective immuneresponse in more than 90% of recipients. However, new vaccination strategies are necessary for successfulimmunization of the remaining non- or low-responders. We have previously characterized a novel HBVchimeric antigen, which combines neutralization epitopes of the S and the preS1 domain of the large (L)envelope protein (genotype D). The S/preS121–47chimera produced in mammalian cells and Nicotianabenthamiana plants, induced a significantly stronger immune response in parenterally vaccinated micethan the S protein. Here we describe the transient expression of the S/preS121–47antigen in an edibleplant, Lactuca sativa, for potential development of an oral HBV vaccine. Our study shows that oral admin-istration of adjuvant-free Lactuca sativa expressing the S/preS121–47antigen, three times, at 1lg/dose,was sufficient to trigger a humoral immune response in mice. Importantly, the elicited antibodies wereable to neutralize HBV infection in an NTCP-expressing infection system (HepG2-NTCP cell line) moreefficiently than those induced by mice fed on Lactuca sativa expressing the S protein. These results sup-port the S/preS121–47antigen as a promising candidate for future development as an edible HBV vaccine.
Forfattere
Even Klyve Dahl Hetron Mweemba Munang'andu Andre van Eerde Jihong Liu Clarke Øystein EvensenSammendrag
Det er ikke registrert sammendrag
Forfattere
Andre van Eerde Johanna Gottschamel Ralph Bock Kristine Eraker Aasland Hansen Hetron Mweemba Munangandu Henry Daniell Jihong Liu ClarkeSammendrag
Dengue fever is a mosquito (Aedes aegypti) ‐transmitted viral disease that is endemic in more than 125 countries around the world. There are four serotypes of the dengue virus (DENV 1‐4) and a safe and effective dengue vaccine must provide protection against all four serotypes. To date, the first vaccine, Dengvaxia (CYD‐TDV), is available after many decades’ efforts, but only has moderate efficacy. More effective and affordable vaccines are hence required. Plants offer promising vaccine production platforms and food crops offer additional advantages for the production of edible human and animal vaccines, thus eliminating the need for expensive fermentation, purification, cold storage and sterile delivery. Oral vaccines can elicit humoral and cellular immunity via both the mucosal and humoral immune systems. Here, we report the production of tetravalent EDIII antigen (EDIII‐1‐4) in stably transformed lettuce chloroplasts. Transplastomic EDIII‐1‐4‐expressing lettuce lines were obtained and homoplasmy was verified by Southern blot analysis. Expression of EDIII‐1‐4 antigens was demonstrated by immunoblotting, with the EDIII‐1‐4 antigen accumulating to 3.45% of the total protein content. Immunological assays in rabbits showed immunogenicity of EDIII‐1‐4. Our in vitro gastrointestinal digestion analysis revealed that EDIII‐1‐4 antigens are well protected when passing through the oral and gastric digestion phases but underwent degradation during the intestinal phase. Our results demonstrate that lettuce chloroplast engineering is a promising approach for future production of an affordable oral dengue vaccine.
Forfattere
Yanliang Wang Erik Lysøe Tegan Armarego-Marriott Alexander Erban Lisa Paruch Andre van Eerde Ralph Bock Jihong Liu ClarkeSammendrag
Det er ikke registrert sammendrag
Forfattere
Andre van Eerde Johanna Gottschamel Hege Særvold Steen Sissel Haugslien Anna-Marja Aura Stephanie Ruf Ralph Bock Jihong Liu ClarkeSammendrag
Det er ikke registrert sammendrag
Forfattere
Jihong Liu Clarke Lisa Paruch Mihaela-Olivia Dobrica Iuliana Caras Catalin Tucureanu Adrian Onu Sonya Ciulean Crina Stavaru Andre van Eerde Hege Særvold Steen Sissel Haugslien Catalina Petrareanu Catalin Lazar Ioan Popescu Ralph Bock Jean Dubuisson Norica Branza-NichitaSammendrag
Det er ikke registrert sammendrag
Forfattere
Jihong Liu Clarke Lisa Paruch Mihaela-Olivia Dobrica Iuliana Caras Catalin Tucureanu Adrian Onu Sonya Ciulean Crina Stavaru Andre van Eerde Yanliang Wang Hege Særvold Steen Sissel Haugslien Catalina Petrareanu Catalin Lazar Costin-loan Popescu Ralph Bock Jean Dubuisson Norica Branza-NichitaSammendrag
The hepatitis C virus (HCV) is a major etiologic agent for severe liver diseases ( e.g . cirrhosis, fibrosis and hepatocellular carcinoma). Approximately 140 million people have chronic HCV infections and about 500 000 die yearly from HCV-related liver pathologies. To date, there is no licensed vaccine available to prevent HCV infection and production of a HCV vaccine remains a major challenge. Here, we report the successful production of the HCV E1E2 heterodimer, an important vaccine candidate, in an edible crop (lettuce, Lactuca s ativa ) using Agrobacterium - mediated transient expression technology. The wild-type dimer (E1E2) and a variant without an N-glycosylation site in the E2 polypeptide (E1E2 Δ N6) were expressed, and appropriate N-glycosylation pattern and functionality of the E1E2 dimers were demonstrated. The humoral immune response induced by the HCV proteins was investigated in mice following oral administration of lettuce antigens with or without previous intramuscular prime with the mammalian HEK293T cell-expressed HCV dimer. Immunization by oral feeding only resulted in development of weak serum levels of anti-HCV IgM for both antigens; however, the E1E2 Δ N6 proteins produced higher amounts of secretory IgA, suggesting improved immunogenic properties of the N-glycosylation mutant. The mice group receiving the intramuscular injection followed by two oral boosts with the lettuce E1E2 dimer developed a systemic but also a mucosal immune response, as demonstrated by the presence of anti-HCV secretory IgA in faeces extracts. In summary, our study demonstrates the feasibility of producing complex viral antigens in lettuce, using plant transient expression technology, with great potential for future low-cost oral vaccine development.
Forfattere
Jihong Liu Clarke Andre van Eerde Lisa Paruch Inger Heldal Hege Særvold Steen Yanliang Wang Astrid Sivertsen Sissel HaugslienSammendrag
Det er ikke registrert sammendrag
Forfattere
Andre van Eerde Yanliang Wang John-Kristian Jameson Lisa Paruch Aniko Varnai Hege Særvold Steen Vincentius Gerardus Henricus Eijsink Jihong Liu ClarkeSammendrag
Det er ikke registrert sammendrag
Forfattere
Jihong Liu Clarke Lisa Paruch Hege Særvold Steen Andre van Eerde Yanliang Wang Astrid Sivertsen Sissel Haugslien Inger HeldalSammendrag
Det er ikke registrert sammendrag
Forfattere
Steffi Munack Kathrin Roderer Jurate Kamarauskaite Gabriele Cordara Andre van Eerde Peter Kast Ute KrengelSammendrag
Det er ikke registrert sammendrag

Divisjon for bioteknologi og plantehelse
Healthy feed to healthy aquatic food via Sino-Norwegian cooperation- Feed2Food
The project is at the forefront of scientific research in utilizing molecular, physiological and high advanced methodology to quantify the challenges with feed additives in combination with high fat diets (HFD).

SmartVac - Next Generation Viral Hepatitis B and C vaccine development in plantsand algae using advanced biotechnological tools
Hepatitis B (HBV) and C viruses (HCV) infect the human liver, triggering persistent inflammation and eventually cirrhosis and hepatocellular carcinoma (HCC), the second leading cause of cancer-related mortality worldwide. Currently, more than 500 million people are chronically infected with HBV or HCV and at high risk of developing end stage liver disease and HCC.

SINOGRAIN II
Scientists from NIBIO and CAAS are working together using innovative technologies in order to improve productivity, food safety and sustainability in Chinese agriculture.