Til dokument

Sammendrag

An epigenetic memory of the temperature sum experienced during embryogenesis is part of the climatic adaptation strategy of the long-lived gymnosperm Norway spruce. This memory has a lasting effect on the timing of bud phenology and frost tolerance in the resulting epitype trees. The epigenetic memory is well characterized phenotypically and at the transcriptome level, but to what extent DNA methylation changes are involved have not previously been determined. To address this, we analyzed somatic epitype embryos of Norway spruce clones produced at contrasting epitype-inducing conditions (18 and 28°C). We screened for differential DNA methylation in 2744 genes related mainly to the epigenetic machinery, circadian clock, and phenology. Of these genes, 68% displayed differential DNA methylation patterns between contrasting epitype embryos in at least one methylation context (CpG, CHG, CHH). Several genes related to the epigenetic machinery (e.g., DNA methyltransferases, ARGONAUTE) and the control of bud phenology (FTL genes) were differentially methylated. This indicates that the epitype-inducing temperature conditions induce an epigenetic memory involving specific DNA methylation changes in Norway spruce.

Sammendrag

A major challenge for plants in a rapidly changing climate is to adapt to rising temperatures. Some plants adapt to temperature conditions by generating an epigenetic memory that can be transmitted both meiotically and mitotically. Such epigenetic memories may increase phenotypic variation to global warming and provide time for adaptation to occur through classical genetic selection. The goal of this study was to understand how warmer temperature conditions experienced during sexual and asexual reproduction affect the transcriptomes of different strawberry (Fragaria vesca) ecotypes. We let four European F. vesca ecotypes reproduce at two contrasting temperatures (18 and 28°C), either asexually through stolon formation for several generations, or sexually by seeds (achenes). We then analyzed the transcriptome of unfolding leaves, with emphasis on differential expression of genes belonging to the epigenetic machinery. For asexually reproduced plants we found a general transcriptomic response to temperature conditions but for sexually reproduced plants we found less significant responses. We predicted several splicing isoforms for important genes (e.g. a SOC1, LHY, and SVP homolog), and found significantly more differentially presented splicing event variants following asexual vs. sexual reproduction. This difference could be due to the stochastic character of recombination during meiosis or to differential creation or erasure of epigenetic marks during embryogenesis and seed development. Strikingly, very few differentially expressed genes were shared between ecotypes, perhaps because ecotypes differ greatly both genetically and epigenetically. Genes related to the epigenetic machinery were predominantly upregulated at 28°C during asexual reproduction but downregulated after sexual reproduction, indicating that temperature-induced change affects the epigenetic machinery differently during the two types of reproduction.

Til dokument

Sammendrag

Temperature conditions experienced during embryogenesis and seed development may induce epigenetic changes that increase phenotypic variation in plants. Here we investigate if embryogenesis and seed development at two different temperatures (28 vs. 18°C) result in lasting phenotypic effects and DNA methylation changes in woodland strawberry (Fragaria vesca). Using five European ecotypes from Spain (ES12), Iceland (ICE2), Italy (IT4), and Norway (NOR2 and NOR29), we found statistically significant differences between plants from seeds produced at 18 or 28°C in three of four phenotypic features investigated under common garden conditions. This indicates the establishment of a temperature-induced epigenetic memory-like response during embryogenesis and seed development. The memory effect was significant in two ecotypes: in NOR2 flowering time, number of growth points and petiole length were affected, and in ES12 number of growth points was affected. This indicates that genetic differences between ecotypes in their epigenetic machinery, or other allelic differences, impact this type of plasticity. We observed statistically significant differences between ecotypes in DNA methylation marks in repetitive elements, pseudogenes, and genic elements. Leaf transcriptomes were also affected by embryonic temperature in an ecotype-specific manner. Although we observed significant and lasting phenotypic change in at least some ecotypes, there was considerable variation in DNA methylation between individual plants within each temperature treatment. This within-treatment variability in DNA methylation marks in F. vesca progeny may partly be a result of allelic redistribution from recombination during meiosis and subsequent epigenetic reprogramming during embryogenesis.

Til dokument

Sammendrag

Plants provide not only food and feed, but also herbal medicines and various raw materials for industry. Moreover, plants can be green factories producing high value bioproducts such as biopharmaceuticals and vaccines. Advantages of plant-based production platforms include easy scale-up, cost effectiveness, and high safety as plants are not hosts for human and animal pathogens. Plant cells perform many post-translational modifications that are present in humans and animals and can be essential for biological activity of produced recombinant proteins. Stimulated by progress in plant transformation technologies, substantial efforts have been made in both the public and the private sectors to develop plant-based vaccine production platforms. Recent promising examples include plant-made vaccines against COVID-19 and Ebola. The COVIFENZ® COVID-19 vaccine produced in Nicotiana benthamiana has been approved in Canada, and several plant-made influenza vaccines have undergone clinical trials. In this review, we discuss the status of vaccine production in plants and the state of the art in downstream processing according to good manufacturing practice (GMP). We discuss different production approaches, including stable transgenic plants and transient expression technologies, and review selected applications in the area of human and veterinary vaccines. We also highlight specific challenges associated with viral vaccine production for different target organisms, including lower vertebrates (e.g., farmed fish), and discuss future perspectives for the field.

Til dokument

Sammendrag

Plants must adapt with increasing speed to global warming to maintain their fitness. One rapid adaptation mechanism is epigenetic memory, which may provide organisms sufficient time to adapt to climate change. We studied how the perennial Fragaria vesca adapted to warmer temperatures (28°C vs. 18°C) over three asexual generations. Differences in flowering time, stolon number, and petiole length were induced by warmer temperature in one or more ecotypes after three asexual generations and persisted in a common garden environment. Induced methylome changes differed between the four ecotypes from Norway, Iceland, Italy, and Spain, but shared methylome responses were also identified. Most differentially methylated regions (DMRs) occurred in the CHG context, and most CHG and CHH DMRs were hypermethylated at the warmer temperature. In eight CHG DMR peaks, a highly similar methylation pattern could be observed between ecotypes. On average, 13% of the differentially methylated genes between ecotypes also showed a temperature-induced change in gene expression. We observed ecotype-specific methylation and expression patterns for genes related to gibberellin metabolism, flowering time, and epigenetic mechanisms. Furthermore, we observed a negative correlation with gene expression when repetitive elements were found near (±2 kb) or inside genes. In conclusion, lasting phenotypic changes indicative of an epigenetic memory were induced by warmer temperature and were accompanied by changes in DNA methylation patterns. Both shared methylation patterns and transcriptome differences between F. vesca accessions were observed, indicating that DNA methylation may be involved in both general and ecotype-specific phenotypic variation.

Sammendrag

Aquaculture has undergone rapid development in the past decades. It provides a large part of high-quality protein food for humans, and thus, a sustainable aquaculture industry is of great importance for the worldwide food supply and economy. Along with the quick expansion of aquaculture, the high fish densities employed in fish farming increase the risks of outbreaks of a variety of aquatic diseases. Such diseases not only cause huge economic losses, but also lead to ecological hazards in terms of pathogen spread to marine ecosystems causing infection of wild fish and polluting the environment. Thus, fish health is essential for the aquaculture industry to be environmentally sustainable and a prerequisite for intensive aquaculture production globally. The wide use of antibiotics and drug residues has caused intensive pollution along with risks for food safety and increasing antimicrobial resistance. Vaccination is the most effective and environmentally friendly approach to battle infectious diseases in aquaculture with minimal ecological impact and is applicable to most species of farmed fish. However, there are only 34 fish vaccines commercially available globally to date, showing the urgent need for further development of fish vaccines to manage fish health and ensure food safety. Plant genetic engineering has been utilized to produce genetically modified crops with desirable characteristics and has also been used for vaccine production, with several advantages including cost-effectiveness, safety when compared with live virus vaccines, and plants being capable of carrying out posttranslational modifications that are similar to naturally occurring systems. So far, plant-derived vaccines, antibodies, and therapeutic proteins have been produced for human and animal health. However, the development of plant-made vaccines for animals, especially fish, is still lagging behind the development of human vaccines. The present review summarizes the development of fish vaccines currently utilized and the suitability of the plant-production platform for fish vaccine and then addresses considerations regarding fish vaccine production in plants. Developing fish vaccines by way of plant biotechnology are significant for the aquaculture industry, fish health management, food safety, and human health.

Til dokument

Sammendrag

MicroRNAs (miRNAs) are non-protein coding RNAs of ~20–24 nucleotides in length that play an important role in many biological and metabolic processes, including the regulation of gene expression, plant growth and developmental processes, as well as responses to stress and pathogens. The aim of this study was to identify and characterize novel and conserved microRNAs expressed in methyl jasmonate-treated Scots pine needles. In addition, potential precursor sequences and target genes of the identified miRNAs were determined by alignment to the Pinus unigene set. Potential precursor sequences were identified using the miRAtool, conserved miRNA precursors were also tested for the ability to form the required stem-loop structure, and the minimal folding free energy indexes were calculated. By comparison with miRBase, 4975 annotated sequences were identified and assigned to 173 miRNA groups, belonging to a total of 60 conserved miRNA families. A total of 1029 potential novel miRNAs, grouped into 34 families were found, and 46 predicted precursor sequences were identified. A total of 136 potential target genes targeted by 28 families were identified. The majority of previously reported highly conserved plant miRNAs were identified in this study, as well as some conserved miRNAs previously reported to be monocot specific. No conserved dicot-specific miRNAs were identified. A number of potential gymnosperm or conifer specific miRNAs were found, shared among a range of conifer species.

Sammendrag

Recent discoveries have highlighted multiple mitotically and meiotically inherited alterations in gene expression that could not be explained solely by changes in the DNA sequence but were acknowledged as epigenetic. The modern view on epigenetics considers it as an integral part of genetics. Epigenetic mechanisms are encoded by genes in the genome and contribute to an essential part of genomic diversity, significantly extending its regulatory abilities. Epigenetic mechanisms involve molecular chromatin alterations through DNA methylation and histone modifications, as well as, complex non-coding RNAs and related enzyme machinery leading to changes in gene expression and resulting in changing phenotypes. In plants, epigenetic mechanisms may occur over their lifetime and across multiple generations, and can contribute substantially to phenotypic plasticity, stress responses, disease resistance, acclimation and adaptation to habitat conditions. In this review, we summarize recent advances with regards to Norway spruce epigenomics. We first consider the large size of the spruce genome that is linked to epigenetic mechanisms and why epigenomics is vitally important for spruce. Then, we discuss the molecular machinery supporting epigenetic mechanisms in Norway spruce and putative gene models involved. We presume substantial extension of gene families of epigenetic regulators and non-coding RNAs, especially in reproductive tissues. Norway spruce was the first species among forest trees in which epigenetic memory and epigenetic mechanisms were studied. The induction of an epigenetic memory during sexual reproduction and somatic embryogenesis has been described in Norway spruce. We discuss the latest results of epigenomic variation and epigenetic memory studies in Norway spruce and define the future perspectives for epigenetic studies. However, there is still a long way to decipher how the epigenetic mechanisms are involved in maintaining the stability of the spruce epigenome, how the epigenome is set to produce the epigenetic memory phenomenon and how these may result in an increased rate of adaptation to a changing environment.

Sammendrag

Endogenous antimicrobial peptides (AMPs) are evolutionarily ancient factors of innate immunity, which are produced by all multicellular organisms and play a key role in their protection against infection. Red king crab (Paralithodes camtschaticus), also called Kamchatka crab, is widely distributed and the best known species of all king crabs belonging to the family Lithodidae. Despite their economic importance, the genetic resources of king crabs are scarcely known and no fullgenome sequences are available to date. Therefore, analysis of the red king crab transcriptome and identifcation and characterization of its AMPs could potentially contribute to the development of novel antimicrobial drug candidates when antibiotic resistance has become a global health threat. In this study, we sequenced the P. camtschaticus transcriptomes from carapace, tail fap and leg tissues using an Illumina NGS platform. Libraries were systematically analyzed for gene expression profles along with AMP prediction. By an in silico approach using public databases we defned 49 cDNAs encoding for AMP candidates belonging to diverse families and functional classes, including buforins, crustins, paralithocins, and ALFs (anti-lipopolysaccharide factors). We analyzed expression patterns of 27 AMP genes. The highest expression was found for Paralithocin 1 and Crustin 3, with more than 8,000 reads. Other paralithocins, ALFs, crustins and ubiquicidins were among medium expressed genes. This transcriptome data set and AMPs provide a solid baseline for further functional analysis in P. camtschaticus. Results from the current study contribute also to the future application of red king crab as a bio-resource in addition to its being a known seafood delicacy.

Til dokument

Sammendrag

Main conclusion Persistent DNA damage in gamma-exposed Norway spruce, Scots pine and Arabidopsis thaliana, but persistent adverse effects at the organismal and cellular level in the conifers only. Gamma radiation emitted from natural and anthropogenic sources may have strong negative impact on plants, especially at high dose rates. Although previous studies implied different sensitivity among species, information from comparative studies under standardized conditions is scarce. In this study, sensitivity to gamma radiation was compared in young seedlings of the conifers Scots pine and Norway spruce and the herbaceous Arabidopsis thaliana by exposure to 60Co gamma dose rates of 1–540 mGy h−1 for 144 h, as well as 360 h for A. thaliana. Consistent with slightly less prominent shoot apical meristem, in the conifers growth was significantly inhibited with increasing dose rate ≥ 40 mGy h−1. Post-irradiation, the conifers showed dose-rate-dependent inhibition of needle and root development consistent with increasingly disorganized apical meristems with increasing dose rate, visible damage and mortality after exposure to ≥ 40 mGy h−1. Regardless of gamma duration, A. thaliana showed no visible or histological damage or mortality, only delayed lateral root development after ≥ 100 mGy h−1 and slightly, but transiently delayed post-irradiation reproductive development after ≥ 400 mGy h−1. In all species dose-rate-dependent DNA damage occurred following ≥ 1–10 mGy h−1 and was still at a similar level at day 44 post-irradiation. In conclusion, the persistent DNA damage (possible genomic instability) following gamma exposure in all species may suggest that DNA repair is not necessarily mobilized more extensively in A. thaliana than in Norway spruce and Scots pine, and the far higher sensitivity at the organismal and cellular level in the conifers indicates lower tolerance to DNA damage than in A. thaliana.

Til dokument

Sammendrag

5-Methylcytosine (5mC) is an epigenetic modification involved in regulation of gene expression in metazoans and plants. Iron-(II)/α-ketoglutarate-dependent dioxygenases can oxidize 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Although these oxidized forms of 5mC may serve as demethylation intermediates or contribute to transcriptional regulation in animals and fungi, experimental evidence for their presence in plant genomes is ambiguous. Here, employing reversed-phase HPLC coupled with sensitive mass spectrometry, we demonstrated that, unlike 5caC, both 5hmC and 5fC are detectable in non-negligible quantities in the DNA of a conifer, Norway spruce. Remarkably, whereas 5hmC content of spruce DNA is approximately 100-fold lower relative to human colorectal carcinoma cells, the levels of both - 5fC and a thymine base modification, 5-hydroxymethyluracil, are comparable in these systems. We confirmed the presence of modified DNA bases by immunohistochemistry in Norway spruce buds based on peroxidase-conjugated antibodies and tyramide signal amplification. Our results reveal the presence of specific range of noncanonical DNA bases in conifer genomes implying potential roles for these modifications in plant development and homeostasis.

Til dokument

Sammendrag

Climate change is one of the greatest challenges for the biosphere. As sessile organisms, plants must adapt quickly to keep pace with the rapidly changing climatic conditions. Epigenetic memory is one mechanism which would provide sufficient plasticity under rapid climate change and enable long-lived organisms to survive long enough to adapt by classical genetic selection. In Norway spruce, the timing of bud burst and bud set are regulated by an epigenetic memory established by the temperature sum endured during embryogenesis. The resulting epitypes display a life-long shift in seasonal timing of the bud phenology, a trait previously presumed to be under strict classical selection and highly heritable. However, Norway spruce is a difficult plant to study because it has a very long generation time and an extensive genome size. We therefore seek to find a suitable perennial model plant to study the phenomenon of epigenetic climatic memory. Woodland strawberry (Fragaria vesca) may be an ideal model to research the role of epigenetic memory on plant phenology. Fragaria vesca is a perennial plant with a small well-characterized genome, a short sexual reproduction cycle and can also propagate asexually trough clonal daughter plants formed by stolons. We will explore whether the temperature sum experienced during sexual and asexual reproduction impact on the phenology of Fragaria vesca and use this as a model to decipher the molecular mechanism underlying epigenetic memory in plants.

Sammendrag

Epigenetic memory in Norway spruce affects the timing of bud burst and bud set, vitally important adaptive traits for this long-lived forest species. Epigenetic memory is established in response to the temperature conditions during embryogenesis. Somatic embryogenesis at different epitype inducing (EpI) temperatures closely mimics the natural processes of epigenetic memory formation in seeds, giving rise to epigenetically different clonal plants in a reproducible and predictable manner, with respect to altered bud phenology. MicroRNAs (miRNAs) and other small non-coding RNAs (sRNAs) play an essential role in the regulation of plant gene expression and may affect this epigenetic mechanism. We used NGS sequencing and computational in silico methods to identify and profile conserved and novel miRNAs among small RNAs in embryogenic tissues of Norway spruce at three EpI temperatures (18, 23 and 28◦C). We detected three predominant classes of sRNAs related to a length of 24 nt, followed by a 21–22 nt class and a third 31 nt class of sRNAs. More than 2100 different miRNAs within the prevailing length 21–22 nt were identified. Profiling these putative miRNAs allowed identification of 1053 highly expressed miRNAs, including 523 conserved and 530 novels. 654 of these miRNAs were found to be differentially expressed (DEM) depending on EpI temperature. For most DEMs, we defined their putative mRNA targets. The targets represented mostly by transcripts of multiple-repeats proteins, like TIR, NBS-LRR, PPR and TPR repeat, Clathrin/VPS proteins, Myb-like, AP2, etc. Notably, 124 DE miRNAs targeted 203 differentially expressed epigenetic regulators. Developing Norway spruce embryos possess a more complex sRNA structure than that reported for somatic tissues. A variety of the predicted miRNAs showed distinct EpI temperature dependent expression patterns. These putative EpI miRNAs target spruce genes with a wide range of functions, including genes known to be involved in epigenetic regulation, which in turn could provide a feedback process leading to the formation of epigenetic marks. We suggest that TIR, NBS and LRR domain containing proteins could fulfill more general functions for signal transduction from external environmental stimuli and conversion them into molecular response. Fine-tuning of the miRNA production likely participates in both developmental regulation and epigenetic memory formation in Norway spruce.

Til dokument

Sammendrag

Main conclusion: Epigenetic memory affects the timing of bud burst phenology and the expression of bud burstrelated genes in genetically identical Norway spruce epitypes in a manner usually associated with ecotypes. In Norway spruce, a temperature-dependent epigenetic memory established during embryogenesis affects the timing of bud burst and bud set in a reproducible and predictable manner. We hypothesize that the clinal variation in these phenological traits, which is associated with adaptation to growth under frost-free conditions, has an epigenetic component. In Norway spruce, dehydrins (DHNs) have been associated with extreme frost tolerance. DHN transcript levels decrease gradually prior to flushing, a time when trees are highly sensitive to frost. Furthermore, EARLY BUD BREAK 1 genes (EBB1) and the FT-TFL1- LIKE 2-gene (PaFTL2) were previously suggested to be implied in control of bud phenology. Here we report an analysis of transcript levels of 12 DHNs, 3 EBB1 genes and FTL2 in epitypes of the same genotype generated at different epitype-inducing temperatures, before and during spring bud burst. Earlier flushing of epitypes originating from embryos developed at 18 C as compared to 28 C, was associated with differential expression of these genes between epitypes and between buds and last year’s needles. The majority of these genes showed significantly different expressions between epitypes in at least one time point. The general trend in DHN expression pattern in buds showed the expected reduction in transcript levels when approaching flushing, whereas, surprisingly, transcript levels peaked later in needles, mainly at the moment of bud burst. Collectively, our results demonstrate that the epigenetic memory of temperature during embryogenesis affects bud burst phenology and expression of the bud burst-related DHN, EBB1 and FTL2 genes in genetically identical Norway spruce epitypes.

Til dokument

Sammendrag

Epigenetic memory formed in the Norway spruce embryos permanently affect the timing of bud burst and bud set in the progenies, vitally important adaptive traits in this long-lived forest species. Epigenetic memory marks are established in response to the temperature conditions prevailing during embryogenesis; the epitype is fixed by the time the embryo is fully developed and is mitotically propagated throughout the tree’s life span. Somatic embryogenesis closely mimics the natural zygotic embryo formation and results in epigenetically different plants in a predictable temperature-dependent manner with respect to altered phenology. Using RNAseq transcriptome analysis of mRNA and noncodingRNA (ncRNA) changes were monitored in somatic embryos under different temperatures. We found distinct differences in mRNA and ncRNA transcriptomes between the genetically identical embryogenic tissues grown under the epitype-inducing temperatures suggesting temperature-dependent canalizing of gene expression during embryo formation, putatively based on chromatin modifications.

Til dokument

Sammendrag

Embryogenesis is the initial stage of plant life, when the basics of body plan and the post-embryonic development are laid down. Epigenetic memory formed in the Norway spruce embryos permanently affect the timing of bud burst and bud set in progenies, vitally important adaptive traits in this long-lived forest species. The epigenetic memory marks are established in response to the temperature conditions prevailing during zygotic and somatic embryogenesis; the epitype is fixed by the time the embryo is fully developed and is mitotically propagated throughout the tree’s life span. Somatic embryogenesis closely mimics the natural zygotic embryo formation and results in epigenetically different plants in a predictable temperature-dependent manner with respect to altered phenology. Using Illumina-based Massive Analysis of cDNA Ends, the transcriptome changes were monitored in somatic embryos during morphogenesis stage under two different temperatures (18 vs. 30 °C). We found distinct differences in transcriptomes between the genetically identical embryogenic tissues grown under the two epitype-inducing temperatures suggesting temperature-dependent canalizing of gene expression during embryo formation, putatively based on chromatin modifications. From 448 transcripts of genes coding for proteins involved in epigenetic machinery, we found 35 of these to be differentially expressed at high level under the epitype-inducing conditions. Therefore, temperature conditions during embryogenesis significantly alter transcriptional profiles including numerous orthologs of transcriptional regulators, epigenetic-related genes, and large sets of unknown and uncharacterized transcripts.

Til dokument

Sammendrag

To investigate the role of dehydrins (DHNs) in extreme low-temperature (LT) tolerance, we sampled needle tissue of Siberian spruce (Picea obovata Ledeb.) from trees growing in an arboretum in Trondheim, Norway from August 2006 to April 2007 and tracked changes in LT tolerance via relative electrolyte leakage. We used western blotting to estimate relative amounts of proteins binding a DHN K-segment antibody, measured relative amounts of nine transcripts for small (<25 kDa) DHNs by quantitative reverse transcription–polymerase chain reaction (PCR) using primers developed for DHN transcripts in a closely related species, Picea abies (L.) Karsten, and isolated and sequenced PCR products for five P. obovata DHNs. Three protein bands of 53, 35 and 33 kDa were detected on western blots of SDS–PAGE-separated protein extracts. The 53-kDa DHN was already present late in the growing season, but accumulated during acclimation, and levels decreased rapidly during deacclimation. The 33- and 35-kDa proteins, identified as Picg5 class DHNs by mass spectrometry, first appeared in detectable amounts late in the acclimation process and remained at detectable levels throughout the period of maximum LT tolerance. Levels of the 53-kDa DHN correlated with two LT tolerance parameters, while results for the 33- and 35-kDa proteins were equivocal due to limited sample size and variation in LT tolerance during the mid-winter period. Three additional bands of 30, 28 and 26 kDa were detected in extracts from needles collected in November 2010 using an immunity-purified antibody. Immunoblotting of two-dimensional gel electrophoresis gels loaded with proteins extracted from October and November samples corroborated the results obtained by SDS–PAGE western blots. One large spot in the 53 kDa range and two trains of spots in the same size range as the 33 and 35 kDa DHNs were detected using the K-segment antibody. Eight of the nine DHN transcripts closely tracked LT tolerance parameters, whereas the ninth DHN transcripts followed a reverse pattern, decreasing during winter and increasing again during deacclimation. Multiple regression models using principal components of the transcripts to predict two different LT tolerance parameters suggest separate but overlapping functions for different DHNs in establishing and maintaining extreme LT tolerance.

Til dokument

Sammendrag

The pathogenic white-rot basidiomycete Heterobasidion irregulare is able to remove lignin and hemicellulose prior to cellulose during the colonization of root and stem xylem of conifer and broadleaf trees. We identified and followed the regulation of expression of genes belonging to families encoding ligninolytic enzymes. In comparison with typical white-rot fungi, the H. irregulare genome has exclusively the short-manganese peroxidase type encoding genes (6 short-MnPs) and thereby a slight contraction in the pool of class II heme-containing peroxidases, but an expansion of the MCO laccases with 17 gene models. Furthermore, the genome shows a versatile set of other oxidoreductase genes putatively involved in lignin oxidation and conversion, including 5 glyoxal oxidases, 19 quinone-oxidoreductases and 12 aryl-alcohol oxidases. Their genetic multiplicity and gene-specific regulation patterns on cultures based on defined lignin, cellulose or Norway spruce lignocellulose substrates suggest divergent specificities and physiological roles for these enzymes. While the short-MnP encoding genes showed similar transcript levels upon fungal growth on heartwood and reaction zone (RZ), a xylem defense tissue rich in phenolic compounds unique to trees, a subset of laccases showed higher gene expression in the RZ cultures. In contrast, other oxidoreductases depending on initial MnP activity showed generally lower transcript levels on RZ than on heartwood. These data suggest that the rate of fungal oxidative conversion of xylem lignin differs between spruce RZ and heartwood. It is conceivable that in RZ part of the oxidoreductase activities of laccases are related to the detoxification of phenolic compounds involved in host-defense. Expression of the several short-MnP enzymes indicated an important role for these enzymes in effective delignification of wood by H. irregulare.

Til dokument

Sammendrag

Conifers are evolutionarily more ancient than their angiosperm counterparts, and thus some adaptive mechanisms and features influenced by epigenetic mechanisms appear more highly displayed in these woody gymnosperms. Conifers such as Norway spruce have very long generation times and long life spans, as well as large genome sizes. This seemingly excessive amount of genomic DNA without apparent duplications could be a rich source of sites for epigenetic regulation and modifications. In Norway spruce, an important adaptive mechanism has been identified, called epigenetic memory. This affects the growth cycle of these trees living in environments with mild summers and cold winters, allowing them to adapt rapidly to new and/or changing environments. The temperature during post-meiotic megagametogenesis and seed maturation epigenetically shifts the growth cycle programme of the embryos. This results in significant and long-lasting phenotypic change in the progeny, such as advance or delay of vital phenological processes of high adaptive value, like bud break and bud set. This phenomenon is not only of important evolutionary significance but has clear practical implications for forest seed production and conservation of forest genetic resources. The underlying molecular mechanism that causes the ‘memory’ in long-lived woody species is currently under investigation. Here we summarize the information related to epigenetic memory regulation in gymnosperms, with special emphasis on conifers. The molecular mechanism behind this is still unknown but transcriptional changes are clearly involved. Epigenetic regulation may be realized through several mechanisms, including DNA methylation, histone modification, chromatin remodelling, small non-coding RNAs and transposable element regulation, of which non-coding RNAs might be one of the most important determinants.

Sammendrag

We compared gene expression in Norway spruce secondary phloem (bark) and developing xylem (sapwood) in response to the necrotrophic pathogen Heterobasidion parviporum, wounding and methyl jasmonate (MeJ). The pathogen induced systemic and local up-regulation of PaPX3, PaPX2 and PaChi4 in both bark and sapwood that returned to constitutive levels as the plants recovered from the infection, whereas the local responses to MeJ were similar in both tissues but was longer lasting for PaPX3 and PaChi4. Genes involved in lignin biosynthesis (PaPAL1, PaPAL2, PaC4H3/5 and PaHCT1) were up-regulated locally in the bark in response to pathogen and wounding whereas MeJ induced a similar but stronger local response. The ethylene biosynthesis related transcripts PaACO and PaACS did not increase in response to MeJ treatment or the pathogen, however it increased both locally and systemically as a response to wounding in the sapwood. These results demonstrate that the local and systemic host responses to pathogen infection and wounding largely correspond and reveal striking similarities between the local response to a necrotroph, wounding and MeJ treatment in both bark and living wood.

Sammendrag

Epigenetic memory marks establishment in Norway spruce occur exclusively during embryogenesis in response to environmental impact, and the epitype is fixated by the time the embryo is fully developed without a change in the DNA sequence. We started large scale studies aimed on identifying and characterizing of genes and regulatory elements involved in the initiation, maintenance, and heritability of epigenetic memory using candidate genes and next generation sequencing approaches. Molecular mechanisms of formation of epigenetic memory were studied on the same full-sibs family zygotic embryo in vitro cultures developed in cold (18°C) and warm (30°C) environmental conditions from proliferation till mature embryo stages. Initially we had found large set (64) of Arabidopsis epigenetic regulator gene homologs in spruce. In general, known epigenetic related genes are very well represented among spruce ESTs. Analysis of the transcription patterns of these genes using RT-PCR in epigenetically different embryogenic samples reveal specific transcription patterns on different stages of embryogenic development dependent on epitype. We are expecting to determine certain stages during embryogenesis when epigenetic memory marks are forming. At the same time, nearly no differences in transcription levels of studied genes had been found in seedlings (4 month old), originated from full-sib families clearly differed in epigenetic response. Using MACE (massive cDNA 3-end sequencing) deep mRNA sequencing on the Illumina GSII platform, we analyzed P. abies transcriptomes by comparison warm and cold originated “embryonic epitypes” developed in cold and warm environmental conditions. Significant differences in transcriptomes between epitypes revealed by high-throughput sequencing will be discussed.

Til dokument

Sammendrag

Purpose: Drought-induced tree susceptibility is a major risk associated with climate change. Here we report how an 11-week drought affected tracheid structure, gene expression, and above- and belowground growth in 5-year-old Norway spruce trees (Picea abies) under controlled conditions. Results: The canopy of trees subjected to severe drought had significantly less current-year needle biomass, and fewer tracheids and tracheid rows in current-year shoots compared to fully watered control trees. Belowground tissues were more strongly affected by drought than aboveground tissues. In fine roots (<2 mm diameter) severe drought significantly reduced root biomass, root diameter, root length density and root surface area per soil volume compared to the control. Tracheid diameter and hydraulic conductivity in fine roots were significantly lower and tracheid flatness higher in trees subjected to severe drought than in control trees, both for long and short roots. Transcripts of the drought-related dehydrins PaDhn1 and PaDhn6 were strongly upregulated in stem bark and current-year needles in response to drought, whereas PaDhn4.5 was down-regulated. Conclusions: This study demonstrates that drought reduces biomass and hydraulic conductivity in fine roots and needles. We suggest that the ratio between PaDhn6 and PaDhn4.5 may be a sensitive marker of drought stress in Norway spruce.

Til dokument

Sammendrag

• Parasitism and saprotrophic wood decay are two fungal strategies fundamental for succession and nutrient cycling in forest ecosystems. An opportunity to assess the trade-off between these strategies is provided by the forest pathogen and wood decayer Heterobasidion annosum sensu lato. • We report the annotated genome sequence and transcript profiling, as well as the quantitative trait loci mapping, of one member of the species complex: H. irregulare. Quantitative trait loci critical for pathogenicity, and rich in transposable elements, orphan and secreted genes, were identified. • A wide range of cellulose-degrading enzymes are expressed during wood decay. By contrast, pathogenic interaction between H. irregulare and pine engages fewer carbohydrate-active enzymes, but involves an increase in pectinolytic enzymes, transcription modules for oxidative stress and secondary metabolite production. • Our results show a trade-off in terms of constrained carbohydrate decomposition and membrane transport capacity during interaction with living hosts. Our findings establish that saprotrophic wood decay and necrotrophic parasitism involve two distinct, yet overlapping, processes.

Sammendrag

Background: NB-LRR resistance proteins are involved in recognizing pathogens and other exogenous stressors in plants. Resistance proteins are the first step in induced defence responses and a better understanding of their regulation is important to understand the mechanisms of plant defence. Much of the post-transcriptional regulation in plants is controlled by microRNAs (miRNA). We examined the expression of five Norway spruce miRNA that may regulate NB-LRR related transcripts in secondary phloem (bark) of resistant Norway spruce after wounding and inoculation with the necrotrophic blue stain fungus Ceratocystis polonica. Results: The plants of this clone recovered from both the pathogen inoculations and wounding alone. We found local and systemic induction of the resistance marker genes PaChi4, PaPAL and PaPX3 indicative of an effective induced host defence response. There were minor local and systemic changes in the expression of five miRNAs and 21 NB-LRRs between healthy and treated plants. Only five putative NB-LRRs (PaLRR1, PaLRR3, PaLRR14, PaLRR15 and PaLRR16) showed significant increases greater than two-fold as a local response to C. polonica. Of all NB-LRRs only PaLRR3, the most highly differentially regulated NB-LRR, showed a significant increase also due to wounding. The five miRNAs showed indications of an initial local and systemic down-regulation at day 1, followed by a later increase up to and beyond the constitutive levels at day 6. However, the initial down-regulation was significant only for miR3693 and miR3705. Conclusions: Overall, local and systemic expression changes were evident only for the established resistance marker genes and PaLRR3. The minor expression changes observed both for the followed miRNAs and their predicted NB-LRR targets suggest that the expression of most NB-LRR genes are maintained close to their constitutive levels in stressed and healthy Norway spruce plants.

Til dokument

Sammendrag

In Norway spruce, the temperature during zygotic embryogenesis appears to adjust an adaptive epigenetic memory in the progeny that may regulate bud phenology and cold acclimation. Conditions colder than normal advance the timing whilst temperatures above normal delay the onset of these processes and altered performance is long lasting in progeny with identical genetic background. As a step toward unraveling the molecular mechanism behind an epigenetic memory, transcriptional analysis was performed on seedlings from seeds of six full-sib families produced at different embryogenesis temperature?cold (CE) vs warm (WE) under long and short day conditions. We prepared two suppressive subtractedcDNAlibraries, forward and reverse, representing genes predominantly expressed in plants from seeds obtained after CE and WE embryogenesis following short day treatment (inducing bud set). Sequencing and annotation revealed considerable differences in the transcriptome of WE versus CE originated plants. By using qRT-PCR we studied the expression patterns of 32 selected candidate genes chosen from subtractive cDNA libraries analysis and nine siRNA pathways genes by a direct candidate approach. Eight genes, two transposons related genes, three with no match to Databases sequences and three genes from siRNA pathways (PaDCL1 and 2, PaSGS3) showed differential expression in progeny from CE andWEcorrelated with the family phenotypic differences. These findingsmaycontribute to our understanding of the epigenetic mechanisms underlying adaptive changes acquired during embryogenesis.

Sammendrag

Experimental evidence shows that Norway spruce can adjust adaptive traits by a kind of long-term memory of temperature and day length present at the time of its early seed development. This mechanism is termed epigenetics; changes in gene activity not based on differences in the genetic code and yet transferable from one generation to the next. This is a rapidly growing research field in human, animal and plant genetics.

Sammendrag

Hvor raskt en organisme kan tilpasse seg forandringer, er avgjørende for hvilket utfall raske endring er i klima vil ha for organismens utbred else og overlevelse. Grana viser en evne til utrolig raskt å tilpasse seg endringer og vår forsk ning knytter denne overlevelsesevnen til det som kalles epigenetikk.

Til dokument

Sammendrag

The northernmost range of beech (Fagus sylvatica L.) is in southern Norway and consists of two distinct and isolated distributions, a single population at Seim in West Norway and several adjacent populations in Vestfold, East Norway. The modest beech pollen deposits beyond these main distributions suggest that the Norwegian beech distribution has never been an extension of the south Scandinavian range. We used genetic markers and historical sources to trace the ancestor populations for the beech at Seim and Vestfold, hypothesising Denmark as the most likely source. Nuclear inter-simple sequence repeat markers, amplified by polymerase chain reaction (PCR), were applied to estimate genetic distances between beech populations in Norway, England and Denmark. The variation in chloroplast DNA polymorphism was estimated using PCR-restriction fragment length polymorphism. The nuclear genetic data indicate Denmark as a source for the beech in Norway, although the data are less certain in the case of Seim than in that of Vestfold. The populations from South England were genetically different from most Scandinavian populations. The genetic variation within Norwegian populations was only slightly lower than that of the English and Danish populations, questioning birds as vectors for dispersal. Thus, the pollen data and our results are in accordance with the intentional introduction and documented human migrations across Skagerrak before and during the Viking Age.

Sammendrag

We have recently found that Norway spruce (Picea abies (L.) Karst.) can rapidly adjust its adaptive performance, probably through an epigenetic mechanism. This appears to employ a kind of long-term memory of temperature sum and (probably) photoperiod from the time of its embryo development. In our research we made identical controlled crosses and produced seed lots under controlled temperature and day-length conditions and later observed phenology, growth and hardiness traits in the progenies. It was repeatedly found that temperature conditions during seed set, in particular, influence the phenotypes of the offspring; seedlings from seeds produced under warm conditions have later terminal bud set and reduced autumn frost hardiness than those from seed produced under colder conditions, and thus perform like a more southern provenance. When embryonic clones were derived from mature zygotic embryos and were cultured at different temperatures, the plants cultured under warm in vitro temperature were the last to set bud and grew taller than those cultured at lower temperatures. Progenies produced in Norway by Central European mother trees had a bud set curve skewed towards that of the local Norwegian performance. A comparison of the performance of seedlings from seeds collected in the same provenance regions in 1970 and 2006 shows that the more recent seed lots consistently produce taller seedlings with a later bud set, probably due to higher temperatures during seed production in 2006. The effect of reproductive environment has been shown to persist for years. It mimics the variation between provenances from different latitudes and altitudes and may explain much of the observed variability in bud set and early height growth between natural populations of Norway spruce. The observed phenomenon suggests an epigenetic mechanism in the developing embryo, either zygotic or somatic, that senses environmental signals such as temperature and influences adaptive traits. Research is underway to understand the molecular basis of this mechanism. We will discuss the implications of this epigenetic phenomenon for the interpretation of provenance differences, for tree breeding and for its possible role in adaptation to climate change.

Sammendrag

Norway spruce expresses a temperature-dependent epigenetic memory from the time of embryo development, which thereafter influences the timing bud phenology. MicroRNAs (miRNAs)are endogenous small RNAs, exerting epigenetic gene regulatory impacts. We have tested for their presence and differential expression. We prepared concatemerized small RNA libraries from seedlings of two full-sib families, originated from seeds developed in a cold and warm environment. One family expressed distinct epigenetic effects while the other not. We used available plant miRNA query sequences to search for conserved miRNAs and from the sequencing we found novel ones; the miRNAs were monitored using relative real time-PCR. Sequencing identified 24 novel and four conserved miRNAs. Further screening of the conserved miRNAs confirmed the presence of 16 additional miRNAs. Most of the miRNAs were targeted to unknown genes. The expression of seven conserved and nine novel miRNAs showed significant differences in transcript levels in the full-sib family showing distinct epigenetic difference in bud set, but not in the nonresponding full-sib family. Putative miRNA targets were studied. Norway spruce contains a set of conserved miRNAs as well as a large proportion of novel nonconserved miRNAs. The differentially expression of specific miRNAs indicate their putative participation in the epigenetic regulation.

Sammendrag

Rotkjuke, Heterobasidion annosum s.l. er et stort problem i de nordlige barskogsområder. I Norge er hele 20 prosent av grantrærne angrepet av denne skadesoppen. Dette fører ikke bare til at tømmeret blir ubrukelig til de fleste formål, men også til frigjøring av mye CO2 som ellers ville vært bundet i trærne. Rotkjuka angriper via rotkontakter. Dette skjer ofte via stubber av felte nabotrær etter hogst eller tynning. Soppen ødelegger stammen opp til tolv meter fra bakkenivå.

Sammendrag

Clonal variation towards resistance has been observed in Norway spruce Heterobasidion annosum s.l. (H.a). H.a. is the main cause of root rot and has a severe economic impact on an economically important conifer tree species. Annual financial losses are in the hundreds of millions of Euros annually. Less susceptible clones appear to have an efficient system of recognizing the pathogen and initiating early defense signalling events. Active defense responses can be started locally and transmitted systemically. This work focus on the expression both spatially (systemically) and temporally in this pathosystem. Two-year-old, somatic saplings of the Norway spruce clone were challenged with H.a., wounded, methyl jasmonate painted and compared to untreated controls and ninety plants were used for the experiment. Stem samples were collected at 1, 3, 6 and 13 days post inoculation (d.p.i). The stem of the saplings were divided into sections along its length and the bark and wood separated from each other at time of collection. In order to see local response an area of 1cm including the site of inoculation was collected, while the spatial (systemic) response was assessed in sections collected at distances of 3 and 6cm away from the site of inoculation. The separated bark and wood were analysed for differential gene expression by qRT-PCR, and the results from peroxidases (PaPX3 and PaPX2) and a chitinase (PaChi4) are presented. Both local and systemic up- and down-regulation were observed at the transcriptional level in both bark and wood, up to 2000 fold local increase in expression was observed for PaChi4.