Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2023

Til dokument

Sammendrag

Phosphorus is a building block for all life and therefore plays an essential role in food production. Currently, large amounts of phosphorus enter the Norwegian food system from abroad in the form of mineral fertilizer, feedstuff, food, as well as micro-ingredients for animal feed, mainly in salmon farming. However, only a small fraction of this phosphorus ends up as food for humans, while the largest part accumulates in soil and water systems. This inefficiency entails two challenges: 1. Phosphorus supply is critical. Phosphate rock, the primary source of phosphorus for fertilizer and micro-ingredient production, is a limited resource that is highly concentrated in a few countries. Over 80% of global phosphate rock reserves are found in only 5 countries, and ~70% are located in Morocco and Morocco-occupied Western Sahara. The high concentration renders many countries vulnerable to geopolitical and economic instabilities and threatens food safety. The EU has therefore included phosphate rock on its list of Critical Raw Materials. 2. The accumulation of phosphorus in water systems can lead to eutrophication and dead zones, threatening fish stocks and other aquatic life. The high phosphorus concentration in soils due to overfertilization over long periods of time increases the danger of losses to water systems by runoff, further exacerbating the eutrophication risk. A more circular use of phosphorus could simultaneously reduce supply and pollution risks. This is particularly relevant in Norway, where the government has an ambition to increase salmon and trout production from currently 1,5 to 5 million tons by 2050. Achieving a circular phosphorus economy is a complex task: (i) The land- and the sea-based food systems are increasingly interlinked, for example through agricultural production of fish feed or the application of fish sludge on agricultural land. (ii) The Norwegian phosphorus cycle is increasingly interlinked with that of other countries as trade flows along the entire food supply chain are growing. (iii) Phosphorus fertilizers, both primary and recycled, are often contaminated with heavy metals such as cadmium, uranium, and zinc, which tend to accumulate in soils. Cleaning the phosphorus cycle is therefore vital for soil fertility and human health. This report is based on the MIND-P project, which studied the Norwegian phosphorus cycle for both agriculture and aquaculture at a farm-by-farm basis and explored options for increasing circularity. The project identified farm-level and structural barriers to managing phosphorus resources more effectively. We propose four fundamental strategies to overcome these barriers: 1. Develop and maintain a national nutrient accounting. 2. Minimize phosphorus losses and accumulations at farm level. 3. Establish infrastructures for capturing, processing, trade, and use of manure and fish sludge to produce high-quality recycled fertilizers that are tailored to the needs of the users in Norway and abroad. 4. Adopt a regulatory framework to promote a market for recycled fertilizer. The strategies proposed here were developed with the support of an Advisory Panel consisting of representatives from government, industry, industry associations, and NGOs in an online and two physical workshops conducted in 2022.

Sammendrag

De siste årene har det kommet en rekke bionedbrytbare plastvarianter, også i Norge. Men hvor nedbrytbar er egentlig denne plasten under norske forhold med relativt lave temperaturer? Brytes den fullstendig ned, eller omdannes den til makro- eller mikroplast i stedet? Gjennom prosjektet DGRADE – Nedbrytning av bionedbrytbar plast i jord og avfallsstrømmer har forskere forsøkt å finne svar på disse spørsmålene. De kan nå slå fast at plasten brytes ned, men kun hvis forholdene ligger til rette for det. Hvis ikke forholdene er gode nok, kan også nedbrytbare plastprodukter bidra til plastforsøpling

Sammendrag

Ny forskning viser at nedbrytbar plast brytes ned under norske forhold, men kun dersom den havner der den skal. Det vil si i industriell kompost eller i et jordmiljø der forholdene ligger til rette for at mikroorganismene kan bryte den ned.

Sammendrag

The aim of this study was to contribute to development of organic fertiliser products based on fish sludge (i.e. feed residues and faeces) from farmed smolt. Four dried fish sludge products, one liquid digestate after anaerobic digestion and one dried digestate were collected at Norwegian smolt hatcheries in 2019 and 2020. Their quality as fertilisers was studied by chemical analyses, two 2-year field experiments with spring cereals and soil incubation combined with a first-order kinetics N release model. Cadmium (Cd) and zinc (Zn) concentrations were below European Union maximum limits for organic fertilisers in all products except one (liquid digestate). Relevant organic pollutants (PCB7, PBDE7, PCDD/F + DL-PCB) were analysed for the first time and detected in all fish sludge products. Nutrient composition was unbalanced, with low nitrogen/phosphorus (N/P) ratio and low potassium (K) content relative to crop requirements. Nitrogen concentration in the dried fish sludge products varied (27–70 g N kg-1 dry matter), even when treated by the same technology but sampled at different locations and/or times. In the dried fish sludge products, N was mainly present as recalcitrant organic N, resulting in lower grain yield than with mineral N fertiliser. Digestate showed equally good N fertilisation effect as mineral N fertiliser, but drying reduced N quality. Soil incubation in combination with modelling is a relatively cheap tool that can give a good indication of N quality in fish sludge products with unknown fertilisation effects. Carbon/N ratio in dried fish sludge can also be used as an indicator of N quality.