Thiago Inagaki
Forsker
(+47) 922 65 448
thiago.inagaki@nibio.no
Sted
Ås - Bygg O43
Besøksadresse
Oluf Thesens vei 43, 1433 Ås (Varelevering: Elizabeth Stephansens vei 23)
Biografi
Dedicated researcher with experience in soil science, sustainable agriculture, and climate change adaptation. Academic journey includes a Ph.D. and postdoctoral research focused on soil organic matter stabilization and carbon sequestration in agriculture. Led and coordinated multiple research projects, utilizing advanced techniques such as isotope labeling and synchrotron-based methods, and collaborated with esteemed professors and international research teams.
Work spans various global initiatives, including projects on organic waste management, diversified cropping systems, and no-tillage practices in tropical and subtropical regions. Contributed to educational efforts by developing teaching materials, assisting students, and writing accessible content for broader audiences.
Deeply interested in multidisciplinary soil science research, particularly focusing on soil structure and the persistence of organic matter. Research interests encompass the functionality of soil organic matter in both agricultural and natural systems, primarily focusing on mechanisms for its persistence through organo-mineral associations.
Forfattere
Daniel Ruiz Potma Gonçalves Thiago Inagaki Luis Gustavo Barioni Newton La Scala Junior Maurício Roberto Cherubin João Carlos de Moraes Sá Carlos Eduardo Pellegrino Cerri Adriano AnselmiSammendrag
Soils are the third largest carbon pool on Earth and play a crucial role in mitigating climate change. Therefore, understanding and predicting soil carbon sequestration is of major interest to mitigate climate change globally, especially in countries with strong agricultural backgrounds. In this study, we used a new database composed of 5029 samples collected up to 1-meter depth in three biomes that are most representative of agriculture, Pampas (Prairie), Cerrados (Savanna), and Atlantic Forest (Forest), to explore soil organic carbon (SOC) stocks and its environmental drivers. The Cerrado (Savanna) biome was the only one where croplands presented higher SOC stocks than native vegetation (Native vegetation 121.23 Mg/ha and croplands 127.85 Mg/ha or 5 % higher). From the tested models, the Random Forest outperformed the others, achieving an R2 of 0.64 for croplands and 0.56 for native vegetation. The accuracy of the models varied with soil depth, showing better predictions in shallow layers for croplands and deeper layers for native vegetation. Our results highlight the importance of clay content, precipitation, net primary production (NPP), and temperature as key predictors for soil carbon stocks in the studied biomes. The findings emphasize the importance of protecting the surface layers, especially in the Cerrado biome, to enhance SOC stocks and promote sustainable land management practices. Moreover, the results provide valuable insights for the development of nature-based carbon markets and suggest potential strategies for climate change mitigation. Enhancing our understanding of SOC dynamics and adopting precise environmental predictors will contribute to the formulation of targeted soil management strategies and accelerate progress toward achieving climate goals.
Forfattere
Luiz Claudio Garcia Guilherme H. Carraro Sandro Felema Allison J. Fornari Leandro J. V. Sformi Thiago InagakiSammendrag
Det er ikke registrert sammendrag
Sammendrag
The No-till system and organic fertilization combined can be a potential strategy to avoid nutrient leaching, as the soil structure plays a crucial role in retaining them. In this study, we evaluated the influence of different rates of a bio-fertilizer made of industrial organic waste (IOW) from a poultry slaughterhouse on the percolation and stocks of nitrate in disturbed and undisturbed soil samples collected from a subtropical no-till field in southern Brazil. In an incubation experiment, we performed a percolation experiment using lysimeters and simulated rainfall for 180 days and evaluated the remaining soil nitrate stock after the incubation period. We set up a completely randomized experiment with three replicates using four IOW rates (equivalent to 0, 2, 4, and 8 Mg ha−1) and two sample types: disturbed and undisturbed soils. Using the bio-fertilizer increased nitrate mineralization from 0.77 to 1.55 kg ha−1 day−1. Overall, the IOW application increased the amount of percolated nitrate, significantly influenced by the simulated rainfall (p < 0.01). The amount of water flushed through the lysimeters was significantly higher for the disturbed soils (p < 0.05, LSD test), suggesting that the loosened structure promoted a higher water flux. No differences were observed between undisturbed and disturbed samples for nitrate percolation, implying that the amount of nitrate in the liquid soil phase may be a more critical factor in determining nitrate leaching than the water flux. The disturbed samples presented significantly higher nitrate percolation with increasing IOW rates, regardless of precipitation. Stocks in the 0–5 cm depth were 6.6 kg ha−1 higher for undisturbed samples (p < 0.05, LSD test). This result suggests preserving the soil structure can significantly increase the nitrate stocks upon IOW application.
Divisjon for miljø og naturressurser
Conservation of Biodiversity in China in the light of Climate Change
Climate change is becoming an increasingly important pressure on biodiversity, which adds to the burden of other drivers of loss of biodiversity causing negative effects on ecosystems and species
Divisjon for miljø og naturressurser
AgriCascade
AgriCascade: Gjenvinning av organisk nitrogen med forbedret biokull for gjødslings- og miljøgevinster i norsk landbruk
Divisjon for miljø og naturressurser
AgriCascade
Cascading recycling of organic N-sources with next-generation biochar fertilizer for Norwegian agriculture
Divisjon for miljø og naturressurser
TerraNordica: Nordic Partnership for Soil Health and Agroecology
Soil health and Ecosystem Services (ES) are assessed through measuring carefully selected physical, chemical, and biological soil indicators related to dynamic soil properties, and compare these to thresholds or standard values that separate healthy from unhealthy conditions.
Divisjon for miljø og naturressurser
Sinograin III: Smart agricultural technology and waste-made biochar for food security, reduction of greenhouse gas (GHG) emission, and bio-and circular economy
The Sinograin III project’s overall objective is to contribute to the UN SDGs by widely implementing precision agriculture technologies and application of “waste-to-value” biochar products to achieve sustainable food production with minimized GHG emission, improve soil fertility and promote green growth/zero waste in modern agriculture in China.