Biografi

Alice Budai studerte kjemi og agroøkologi før hun fullførte doktorgrad i jordfag ved Norges Miljø- og Biovitenskapelige Universitet i 2017.  Gjennom doktorgradsarbeidet undersøkte hun effekten av pyrolysetemperatur på biokulls egenskaper med spesielt fokus på stabilitet i jord.  Arbeidet hennes fokuserte på bruk av biokull som jordforbedringsmateriale, og nå undersøker hun effekten av biokull på prosesser som kompostering.  Fagområdet hennes inkluderer metoder som bruker stabile isotoper, gassmåling under inkubasjon, karbonstabilitet, kjemisk struktur av biokull og indikatorer for jordkvalitet. 

Les mer
Til dokument

Sammendrag

Infrared and 13C solid state nuclear magnetic resonance spectroscopies and benzene polycarboxylic acids (BPCA) analysis were used to characterize the structural changes occurring during slow pyrolysis of corncob and Miscanthus at different temperatures from 235 °C to 800 °C. In the case of corncob, a char sample obtained from flash carbonization was also investigated. Spectroscopic techniques gave detailed information on the transformations of the different biomass components, whereas BPCA analysis allowed the amount of aromatic structures present in the different chars and the degree of aromatic condensation to be determined. The results showed that above 500 °C both corncob and Miscanthus give polyaromatic solid residues with similar degree of aromatic condensation but with differences in the structure. On the other hand, at lower temperatures, char composition was observed to depend on the different cellulose/hemicellulose/lignin ratios in the feedstocks. Flash carbonization was found to mainly affect the degree of aromatic condensation.

Til dokument

Sammendrag

Key priorities in biochar research for future guidance of sustainable policy development have been identified by expert assessment within the COST Action TD1107. The current level of scientific understanding (LOSU) regarding the consequences of biochar application to soil were explored. Five broad thematic areas of biochar research were addressed: soil biodiversity and ecotoxicology, soil organic matter and greenhouse gas (GHG) emissions, soil physical properties, nutrient cycles and crop production, and soil remediation. The highest future research priorities regarding biochar’s effects in soils were: functional redundancy within soil microbial communities, bioavailability of biochar’s contaminants to soil biota, soil organic matter stability, GHG emissions, soil formation, soil hydrology, nutrient cycling due to microbial priming as well as altered rhizosphere ecology, and soil pH buffering capacity. Methodological and other constraints to achieve the required LOSU are discussed and options for efficient progress of biochar research and sustainable application to soil are presented.

Til dokument

Sammendrag

Biochar is a carbon-rich solid product obtained by pyrolysis of biomass. Here, we investigated multiple biochars produced under slow pyrolysis (235–800 °C), flash carbonization, and hydrothermal carbonization (HTC), using Scanning Electron Microscope—Energy Dispersive X-ray Spectroscopy (SEM-EDX) in order to determine whether SEM-EDX can be used as a proxy to characterize biochars effectively. Morphological analysis showed that feedstock has an integrated structure compared to biochar; more pores were generated, and the size became smaller when the temperature increased. Maximum carbon content (max. C) and average carbon content (avg. C) obtained from SEM-EDX exhibited a positive relationship with pyrolysis temperature, with max. C correlating most closely with dry combustion total carbon content. The SEM-EDX O/C ratios displayed a consistent response with the highest treatment temperature (HTT). The study suggests that SEM-EDX produces highly consistent C, oxygen (O), and C/O ratios that deserve further investigation as an operational tool for characterization of biochar products.

Sammendrag

Cover crops enhance soil quality and organic matter stability, yet the mechanisms linking belowground inputs to persistent soil organic matter (SOM) remain unclear. This study examined the effects of diversified cover cropping in barley systems on root biomass, SOM fractions, soil structure, microbial activity, and yield in central Norway (63.9° N), three years post-implementation. Six treatments were tested: (1) Control (barley without NPK), (2) Biochar-Fertilizer (barley + NPK + 3 Mg ha⁻¹ biochar), (3) Monocrop (barley), (4) Ryegrass (barley + ryegrass), (5) Clover (barley + ryegrass + white/red clover), and (6) Chicory (barley + ryegrass + red clover + chicory + bird’s-foot trefoil). Ryegrass and Clover systems produced 28.65 g m-² more root biomass at 0–13 cm (p < 0.05) and, along with Monocrop, stored 2.2 Mg ha-¹ more mineral-associated organic matter (MAOM) carbon and 0.2 Mg ha-¹ more MAOM nitrogen at 0–20 cm than other treatments. The Chicory system improved soil structure and biology, with higher aggregate stability, lower bulk density, and greater microbial abundance. Barley yields remained consistent across treatments, suggesting that cover cropping and low biochar inputs do not reduce productivity. Strong correlations (p < 0.01) between root biomass and MAOM stocks highlight root development as a key driver of SOM stabilization via organo-mineral associations. These findings underscore the role of root-enhancing cover crops in promoting MAOM formation and long-term SOM persistence, offering valuable insights for sustainable soil management.