Sammendrag

At the Norwegian Institute of Bioeconomy Research (NIBIO, formerly Bioforsk), biochar has been a topic of research since 2009 through both laboratory and field studies. Initial results demonstrated that biochar produced from clean biomass is safe to use on agricultural soils, and that pyrolysis temperatures of ≥370 °C are necessary for producing biochar that is resistant to decomposition on a timescale of 100 years. Further work identified the chemical transformations that are responsible for biochar stability and contributed to finding the best indicator of this stability. Throughout the years, we have had close collaboration with industry and farmers in Norway, where now industrial networks are in action and there is financial support for the implementation of biochar technology. Despite the convincing benefits of biochar as a climate mitigation solution, it has only slowly advanced beyond the research stage, notably because its effect on yield are too modest. There is therefore a need for win-win biochar solutions benefiting both food production and climate mitigation. Such a solution is the development of biochar fertilizers, which capitalizes on the capacity of biochar to capture and release nutrients. As biochar properties largely depend on pyrolysis conditions and feedstock properties, our current work contributes to the selective design of biochars for the purpose of improving nutrient use efficiency.

Til dokument

Sammendrag

Biochar has been shown to reduce nitrous oxide (N2O) emissions from soils, but the effect is highly variable across studies and the mechanisms are under debate. To improve our mechanistic understanding of biochar effects on N2O emission, we monitored kinetics of NO, N2O and N2 accumulation in anoxic slurries of a peat and a mineral soil, spiked with nitrate and amended with feedstock dried at 105 °C and biochar produced at 372, 416, 562 and 796 °C at five different doses. Both soils accumulated consistently less N2O and NO in the presence of high-temperature chars (BC562 and BC796), which stimulated reduction of denitrification intermediates to N2, particularly in the acid peat. This effect appeared to be strongly linked to the degree of biochar carbonisation as predicted by the H:C ratio of the char. In addition, biochar surface area and pH were identified as important factors, whereas ash content and CEC played a minor role. At low pyrolysis temperature, the biochar effect was soil dependent, suppressing N2O accumulation in the mineral soil, but enhancing it in the peat soil. This contrast was likely due to the labile carbon content of low temperature chars, which contributed to immobilise N in the mineral soil, but stimulated denitrification and N2O emission in the peat soil. We conclude that biochar with a high degree of carbonisation, high pH and high surface area is best suited to supress N2O emission from denitrification, while low temperature chars risk supporting incomplete denitrification.

Sammendrag

Biochar is a carbon-rich material that, due to its inherent resistance to decomposition, is primarily developed with the aim of sequestering carbon in soil. Despite the convincing benefits of biochar as a climate mitigation solution, it has not yet advanced much beyond the research stage, notably because its effect on yield are too modest. Therefore, there is a need for win-win biochar solutions benefiting both food production and climate mitigation. Such a solution is the development of biochar fertilizers, which capitalizes on the capacity of biochar to capture and release nutrients. This effect is largely attributed to the porous structure and large surface area of biochar, with surface charges and ash content also appearing to play a role. The nutrient-retaining capacity of biochar appears to vary among studies investigating different types of biochar exposed to different types of nutrients (mineral anions and cations, organic molecules) under different conditions. In the present study, we will report on a meta-analysis of published biochar properties that are associated with controlling the sorption of nutrients. As biochar properties largely depend on pyrolysis conditions and feedstock properties, this work contributes to the selective design of biochars for the purpose of improving nutrient use efficiency.

Til dokument

Sammendrag

Heavy metal contamination of crop lands surrounding mines in North Vietnam is a major environmental issue for both farmers and the population as a whole. Technology for the production of biochar at a village and household level has been successfully introduced into Vietnamese villages. This study was undertaken to determine if rice straw biochar produced in simple drum ovens could remediate contaminated land. Tests were also carried out to determine if biochar and apatite mixed together could be more effective than biochar alone. Incubation trials were carried out over 90 days in pots to determine the total changes in exchangeable Cd, Pb and Zn. Detailed tests were carried out to determine the mechanisms that bound the heavy metals to the biochar. It was found that biochar at 5% (BC5) and the mixture of biochar and apatite at 3% (BCA3) resulted in the greatest reduction of exchangeable forms of Cd, Pb and Zn. The increase in soil pH caused by adding biochar and apatite created more negative charge on the soil surface that promoted Pb, Zn and Cd adsorption. Heavy metals were mainly bound in the organic, Fe/Mn and carbonate fractions of the biochar and the mixture of biochar and apatite by either ion exchange, adsorption, dissolution/precipitation and through substitution of cations in large organic molecules.

Til dokument Til datasett

Sammendrag

The application of biochar to soils is a promising technique for increasing soil organic C and offsetting GHG emissions. However, large-scale adoption by farmers will likely require the proof of its utility to improve plant growth and soil quality. In this context, we conducted a four-year field experiment between October 2010 to October 2014 on a fertile silty clay loam Albeluvisol in Norway to assess the impact of biochar on soil physical properties, soil microbial biomass, and oat and barley yield. The following treatments were included: Control (soil), miscanthus biochar 8 t C ha1 (BC8), miscanthus straw feedstock 8 t C ha1 (MC8), and miscanthus biochar 25 t C ha1 (BC25). Average volumetric water content at field capacity was significantly higher in BC25 when compared to the control due to changes in BD and total porosity. The biochar amendment had no effect on soil aggregate (2–6 mm) stability, pore size distribution, penetration resistance, soil microbial biomass C and N, and basal respiration. Biochar did not alter crop yields of oat and barley during the four growing seasons. In order to realize biochar’s climate mitigation potential, we suggest future research and development efforts should focus on improving the agronomic utility of biochar in engineered fertilizer and soil amendment products.

Til dokument

Sammendrag

Extreme winter events that damage vegetation are considered an important climatic cause of arctic browning—a reversal of the greening trend of the region—and possibly reduce the carbon uptake of northern ecosystems. Confirmation of a reduction in CO2 uptake due to winter damage, however, remains elusive due to a lack of flux measurements from affected ecosystems. In this study, we report eddy covariance fluxes of CO2 from a peatland in northern Norway and show that vegetation CO2 uptake was delayed and reduced in the summer of 2014 following an extreme winter event earlier that year. Strong frost in the absence of a protective snow cover—its combined intensity unprecedented in the local climate record—caused severe dieback of the dwarf shrub species Calluna vulgaris and Empetrum nigrum. Similar vegetation damage was reported at the time along ~1000 km of coastal Norway, showing the widespread impact of this event. Our results indicate that gross primary production (GPP) exhibited a delayed response to temperature following snowmelt. From snowmelt up to the peak of summer, this reduced carbon uptake by 14 (0–24) g C m−2 (~12% of GPP in that period)—similar to the effect of interannual variations in summer weather. Concurrently, remotely-sensed NDVI dropped to the lowest level in more than a decade. However, bulk photosynthesis was eventually stimulated by the warm and sunny summer, raising total GPP. Species other than the vulnerable shrubs were probably resilient to the extreme winter event. The warm summer also increased ecosystem respiration, which limited net carbon uptake. This study shows that damage from a single extreme winter event can have an ecosystem-wide impact on CO2 uptake, and highlights the importance of including winter-induced shrub damage in terrestrial ecosystem models to accurately predict trends in vegetation productivity and carbon sequestration in the Arctic and sub-Arctic.

Til dokument

Sammendrag

Management of peat soils is regionally important as they cover large land areas and have important but conflicting ecosystems services. A recent management trend for drained peatlands is the control of greenhouse gases (GHG) by changes in agricultural practices, peatland restoration or paludiculture. Due to complex antagonistic controls of moisture, water table management can be difficult to use as a method for controlling GHG emissions. Past studies show that there is no obvious relationship between GHG emission rates and crop type, tillage intensity or fertilization rates. For drained peat soils, the best use options can vary from rewetting with reduced emission to efficient short term use to maximize the profit per amount of greenhouse gas emitted. The GHG accounting should consider the entire life cycle of the peatland and the socio-economic benefits peatlands provide locally. Cultivating energy crops is a viable option especially for wet peat soils with poor drainage, but harvesting remains a challenge due to tractability of wet soils. Paludiculture in lowland floodplains can be a tool to mitigate regional flooding allowing water to be stored on these lands without much harm to crops. This can also increase regional biodiversity providing important habitats for birds and moisture tolerant plant species. However, on many peatlands rewetting is not possible due to their position in the landscape and the associated difficulty to maintain a high stable water table. While the goal of rewetting often is to encourage the return of peat forming plants and the ecosystem services they provide such as carbon sequestration, it is not well known if these plants will grow on peat soils that have been altered by the process of drainage and management. Therefore, it is important to consider peat quality and hydrology when choosing management options. Mapping of sites is recommended as a management tool to guide actions. The environmental status and socio-economic importance of the sites should be assessed both for continued cultivation but also for other ecosystem services such as restoration and hydrological functions (flood control). Farmers need advice, tools and training to find the best after-use option. Biofuels might provide a cost-efficient after use option for some sites. Peat extraction followed by rewetting might provide a sustainable option as rewetting is often easier if the peat is removed, starting the peat accumulation from scratch. Also this provides a way to finance the after-use. As impacts of land use are uncertain, new policies should consider multiple benefits and decisions should be based on scientific evidence and field scale observations. The need to further understand the key processes and long term effects of field scale land use manipulations is evident. The recommended actions for peatlands should be based on local condition and socio-economic needs to outline intermediate and long term plans.

Til dokument

Sammendrag

Rapporten viser resultatene fra vegetasjonsundersøkelser og klimagassutslipp på et prøvefelt for restaurering av dyrket myr som er tatt ut av drift. Tidligere dyrking av hatt effekt på vegetasjonen i lang tid. Etter 35 år ute av drift er vegetasjonen fortsatt mer lik dyrket enn udyrket myr. Blokkering av kanaler har ført til høyere grunnvannsstand og reduserte CO2-utslipp. Utslippene av metan var negativt (ikke signifikant) korrelert med grunnvannstanden og var dessuten korrelert med frekvensen av svampvevede plantearter. Permanent høytstående grunnvann og rask etablering av opprinnelig myrvegetasjon ser ut til å være en forutsetning for framtidig karbonbinding og lave klimagassutslipp fra restaurert myr.

Til dokument

Sammendrag

I denne rapporten har vi undersøkt i hvilken grad restaurering av myr kan bidra til ny karbonlagring og samtidig reduserte klimagassutslipp. Et litteraturstudium viser at drenert myr er en langt større kilde til CO2-utslipp enn både naturlig og restaurert myr. Årsaken til den høye CO2-emisjonen i drenert myr er lavere grunnvannstand, tilgang på oksygen og økt jordrespirasjon. Høy grunnvannstand i naturlig og restaurert myr motvirker jordrespirasjonen og bidrar til lagring av karbon i jorda. Restaurering av myr vil derfor som regel redusere karbontapet, og kan, avhengig av forholdene på stedet, gjenskape området til et karbonsluk.

Til dokument

Sammendrag

NIBIO har gjennomført et pilotprosjekt med restaurering av tidligere dyrket myr på Smøla. Høytstående grunnvann og re-etablering av opprinnelig myrvegetasjon er de viktigste faktorene for å øke karbonlagringen og reduserer klimagassutslippene.

Til dokument

Sammendrag

Northern peatlands hold large amounts of organic carbon (C) in their soils and are as such important in a climate change context. Blanket bogs, i.e. nutrient-poor peatlands restricted to maritime climates, may be extra vulnerable to global warming since they require a positive water balance to sustain their moss dominated vegetation andCsink functioning. This study presents a 4.5 year record of land– atmosphere carbon dioxide (CO2) exchange from the Andøya blanket bog in northern Norway. Compared with other peatlands, the Andøya peatland exhibited low flux rates, related to the low productivity of the dominating moss and lichen communities and the maritime settings that attenuated seasonal temperature variations. It was observed that under periods of high vapour pressure deficit, net ecosystem exchange was reduced, which was mainly caused by a decrease in gross primary production. However, no persistent effects of dry conditions on theCO2 exchange dynamics were observed, indicating that under present conditions and within the range of observed meteorological conditions the Andøya blanket bog retained its Cuptake function. Continued monitoring of these ecosystem types is essential in order to detect possible effects of a changing climate. peatland, carbon, blanket bog, eddy covariance, climate change, net ecosystem exchange

Sammendrag

Studies examining the effect of biochar on N2O turnover in soil have demonstrated that biochar affects both the rate and product ratio of denitrification. The mechanisms proposed include pH effects on N2O reductase , sorption of N2O and electron shuttling to N2O reductases. Recent studies suggest that pyrolysis alters the redox chemistry of biochar leading to the formation of redox active compounds which are thought to mediate the observed suppression of N2O in biochar amended soil. Redox active components however may not only be of significance to biological processes but also catalyze abiotic reactions of N-species which could confound the estimation of biological effects. Here we report experiments designed to examined abiotic interaction between biochar and NO in anoxic water slurries with biochar of increasing pyrolysis temperature. We determined the fate of NO added to the headspace of closed anoxic bottles using high frequency measurements of NO, N2O and N2. Our initial results show a swift disappearance of added NO which can not entirely be attributed to sorption to the biochar. Small but constant quantities of N2O were generated after NO addition indicating abiotic turnover of NO by biochar. NO is an important signal molecule in the regulation of denitrification and hence it is important to elucidate possible abiotic feedbacks of NO reactions in soil. The results will be discussed relative to the redox properties of the biochars tested.

Til dokument

Sammendrag

Rapporten viser resultatene fra et forsøk med restaurering av dyrket myr som er tatt ut av drift, samt måling av utslipp klimagasser før og etter restaurering. Det ble målt store utslipp av CO2 flere år etter at driften opphørt. Metanutslippene varierte sterkt mens utslippene av lystgass var svært lave. Gjentetting av kanaler kan være en enkel og billig metode for tilbakeføre tidligere dyrket myr til naturlig tilstand, men førte ikke til reduksjon i CO2-utslipp eller økning i metanutslipp det første året. Flere års målinger er nødvendig for å få sikrere resultater av effekter av restaurering av myr i Norge.

Sammendrag

Myr kan fungere som et betydelig lager, eller kilde til, atmosfærisk karbon og spiller derfor en viktig rolle i den globale strålingsbalansen. Bioforsk har i samarbeid med UMB satt i gang utvikling av flere forskningsprosjekter for å studere klimagassutslipp fra myr, med spesiell vekt på virkning av jordbruksdrift.