Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2024

Sammendrag

The fall armyworm, Spodoptera frugiperda, situation in Africa remains a priority threat despite significant efforts made since the first outbreaks in 2016 to control the pest and thereby reduce yield losses. Field surveys in Benin and Mali reported that approximately one-week post-emergence of maize plants, the presence of fall armyworm (egg/neonates) could be observed in the field. Scouting for fall armyworm eggs and neonates is, however, difficult and time consuming. In this study, we therefore hypothesized that the optimum timeframe for the fall armyworm female arriving to lay eggs in sown maize fields could be predicted. We did this by back-calculating from interval censored data of egg and neonates collected in emerging maize seedlings at young leaf developmental stage. Early time of ovipositing fall armyworm after sowing was recorded in field experiments. By using temperature-based models to predict phenological development for maize and fall armyworm, combined with analytical approaches for time-to-event data with censored status, we estimated that about 210 accumulated Degree Days (DD) is needed for early detection of neonate larvae in the field. This work is meant to provide new insights on timely pest detection and to guide for precise timing of control measures.

Til dokument

Sammendrag

Gymnosperms are long-lived, cone-bearing seed plants that include some of the most ancient extant plant species. These relict land plants have evolved to survive in habitats marked by chronic or episodic stress. Their ability to thrive in these environments is partly due to their phenotypic flexibility, and epigenetic regulation likely plays a crucial part in this plasticity. We review the current knowledge on abiotic and biotic stress memory in gymnosperms and the possible epigenetic mechanisms underlying long-term phenotypic adaptations. We also discuss recent technological improvements and new experimental possibilities that likely will advance our understanding of epigenetic regulation in these ancient and hard-to-study plants.

Sammendrag

Pærebrann er en plantesykdom forårsaket av bakterien Erwinia amylovora som er regulert i plantehelseforskriften og pærebrannforskriften. Formålet med regelverket og forvaltningen av denne planteskadegjøreren er å forebygge, begrense og bekjempe videre spredning. Pærebrannprosjektet er et samarbeidsprosjekt mellom Mattilsynet og NIBIO. Mattilsynets praktiske arbeid med planteskadegjøreren koordineres via Region Sør og Vest og finansieres over Mattilsynets budsjett. NIBIO mottar bevilgninger fra Landbruks- og matdepartementet for kunnskapsstøtte til Mattilsynet knyttet til sjukdommen pærebrann. I 2023 har prosjektet prioritert rydding av lett mottakelige vertplanter for pærebrann rundt planteskoler som produserer mottakelige planter, som et ledd i å redusere risikoen for smitte inn i denne planteproduksjonen. Videre har vi prioritert kartlegging for å fremskaffe kunnskap om sykdommens utbredelse i Norge. Totalt er 67 kommuner kartlagt og det ble funnet pærebrannsmitte for første gang i 15 av disse. Pærebrann viser seg mer utbredt i spesielt Agder, enn det man tidligere har kjent til.

Sammendrag

Rapportens konklusjon: Det er positivt at det i 2023 ikke er påvist overskridelser for tropane alkaloider i barnemat. Funn av tropane alkalodier i hirsegryn og sorghum(durra)-mel gir derimot grunn til bekymring, og bør følges opp i de kommende år. Analysene viser at det er grunn til å følge utviklingen av pyrrolizidinalkaloid-nivået i tørkede urtekrydder. Resultatene viser at to av 20 prøver valmuefrø overskrider grenseverdien. Mattilsynet ser med bekymring på nivåene av opiumalkaloider i valmuefrø. Mattilsynet ber næringen om å følge opp mottakskontrollen av valmuefrø med analyser for opiumalkaloider i valmuefrø.

Til dokument

Sammendrag

Background: The Norwegian Environment Agency (Miljødirektoratet) and the Norwegian Food Safety Authority (Mattilsynet) tasked the Norwegian Scientific Committee for Food and Environment (Vitenskapskomiteen for mat og miljø, VKM) to provide a scientific opinion identifying which growing media associated with import of live plants pose the greatest risk of introducing non-native species to Norway. VKM was also asked to assess how effective various risk-reducing measures are to prevent such introductions. In this report, we focus on the introduction of plant pests. Trade in plants for planting is a large and complex international business where live plants are grown in some areas and shipped to other areas where they are intended to be planted or replanted. Traded plants are usually shipped with associated growing media. Long-lived plants, like trees and bushes, may be imported to the EU (e.g., from Asia) and traded through different countries for several years of on-growth before being shipped to Norway. Long production cycles, partly in outdoor nurseries, suggest that the import of live plants with soil or other growing media into Norway comes with a high probability of introducing plant pests. Such pests could cause severe harm to Norwegian plant health and impact both agriculture and natural ecosystems. In this scientific opinion, we describe the most used growing media and assess the risks associated with these. We further evaluate what types of plants and which exporting countries are considered to pose the highest risks for introducing plant pests. Finally, we describe different risk reduction options and assess the effectiveness of current Norwegian regulations as a tool to reduce risks. Altogether, this assessment provides a comprehensive overview of the potential risks involved in importing soil and other growing media associated with plants for planting and of possible strategies for mitigating these risks. Key findings: Growing media constituents: The most used organic growing media constituents are peat, wood fiber, and compost, but a great array of other constituents is also used. In this report, we have focused on organic constituents, as these are frequently colonized by living organisms when sourced and may support pest species by acting as a food source or as a sheltering environment that provides water, oxygen, and other crucial factors for pest survival. Growing media as a plant pest carrier: Even though most growing media constituents initially are sterile or free from any plant pests, the processes of mixing, potting, plant cultivation, transport, and storage can easily allow contamination by and propagation of pests underway from a primary source to a customer in Norway. Many organisms can colonize and survive in growing media under conditions primarily designed to keep plants alive. Growing media thus poses a risk of introducing plant pests to Norway when such media are imported together with live plants. Identified pest species: Organisms that can arrive with the import of live plants and associated growing media will include organisms that are not plant pests, known plant pests, regulated pests, and species that may be problematic even though they are not currently listed as quarantine pests. By screening two international databases (CABI, 2022; EPPO, 2024b) and performing a structured literature search, we identified a total of 651 pest species, most of which are not present in Norway, that may be associated with plants imported from Europe with soil or other growing media (154 species from CABI, 87 from EPPO, and 410 from the literature search). Due to time limitations, only 89 species were assessed for their association with soil and growing media. This evaluation included 20 species from CABI, 24 from EPPO, and 45 from the literature search, as detailed in Appendix 5. Climate suitability analyses were carried out .........

Sammendrag

Været gjennom vekstsesongen 2024 vil bli husket som et rekordår i Nord-Norge. Våren og vekststarten var bra i hele landet, men ble våtere og kaldere utpå sommeren i store deler av Sør-Norge. Til tross for en reduksjon i avling fra prognosene etter den fine forsommeren var kornåret 2024 et klart løft fra det vanskelige året i fjor.