Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2021
Forfattere
Svenja B. Kroeger Hans Martin Hanslin Tommy Lennartsson Marcello D'Amico Johannes Kollmann Christina Fischer Elena Albertsen James David Mervyn SpeedSammendrag
Roadsides can harbour remarkable biodiversity; thus, they are increasingly considered as habitats with potential for conservation value. To improve construction and management of roadside habitats with positive effects on biodiversity, we require a quantitative understanding of important influential factors that drive both positive and negative effects of roads. We conducted meta-analyses to assess road effects on bird communities. We specifically tested how the relationship between roads and bird richness varies when considering road type, habitat characteristics and feeding guild association. Overall, bird richness was similar in road habitats compared to non-road habitats, however, the two apparently differ in species composition. Bird richness was lowered by road presence in areas with denser tree cover but did not differ according to road type. Richness differences between habitats with and without roads further depended on primary diet of species, and richness of omnivores was positively affected by road presence. We conclude that impacts of roads on bird richness are highly context-dependent, and planners should carefully evaluate road habitats on a case by case basis. This emphasizes the need for further studies that explicitly test for differences in species composition and abundance, to disentangle contexts where a road will negatively affect bird communities, and where it will not.
Sammendrag
To increase the annual uptake of CO2 as well as the long-term storage of carbon (C) in forests, the Norwegian government consider large-scale replacements of native, deciduous forests with faster-growing species like Norway spruce. To assess the effects of tree species change on ecosystem C and nitrogen (N) stocks and soil chemistry, we used a paired plot approach including stands of native downy birch and planted 45 – 60-year-old Norway spruce. The birch stands were used as reference for the assessment of differences following the tree species change. We found significantly higher C and N stocks in living tree biomass in the spruce stands, whereas no significant differences were found for dead wood. The cover of understory species groups, and the C and N stocks of the aboveground understory vegetation was significantly higher in the birch stands. The tree species change did not affect the soil organic carbon (SOC) stock down to 1 m soil depth; however, the significantly higher stock in the forest floor of the spruce stands suggested a re-distribution of SOC within the profile. There was a significant positive correlation between the SOC stock down to 30 cm soil depth and the total ecosystem C stock for the birch stands, and a negative correlation for the spruce stands. Significant effects of tree species change were found for C and N concentrations, C/N, exchangeable acidity, base saturation, and exchangeable Ca, K, Mg, Na, S, and Fe in the organic horizon or the upper mineral soil layer. The total ecosystem C stock ranged between 197 and 277 Mg ha-1 for the birch stands, and 297 and 387 Mg ha-1 for the spruce stands. The ecosystem C accumulation varied between 32 and 142 Mg ha-1 over the past 45-60 years, whereas the net ecosystem C capture was considerably lower and potentially negative. Our results suggest that the potential to meet the governments’ targets to increase C sequestration depend on the C debt incurred from the removed birch stands, the rotation length, and potentially also the susceptibility of the different stand types to future risk factors related to climate change.
Forfattere
O. Janne Kjønaas Teresa Gómez de la Bárcena Gro Hylen Jørn-Frode Nordbakken Tonje Økland Håvard Kauserud Sunil MundraSammendrag
Det er ikke registrert sammendrag
Forfattere
Yanli Man Marianne Stenrød Chi Wu Marit Almvik Roger Holten Jihong Liu Clarke Shankui Yuan Xiaohu Wu Jun Xu Fengshou Dong Yongquan Zheng Xingang LiuSammendrag
Difenoconazole is a widely used triazole fungicide that has been frequently detected in the environment, but comprehensive study about its environmental fate and toxicity of potential transformation products (TPs) is still lacking. Here, laboratory experiments were conducted to investigate the degradation kinetics, pathways, and toxicity of transformation products of difenoconazole. 12, 4 and 4 TPs generated by photolysis, hydrolysis and soil degradation were identified via UHPLC-QTOF/MS and the UNIFI software. Four intermediates TP295, TP295A, TP354A and TP387A reported for the first time were confirmed by purchase or synthesis of their standards, and they were further quantified using UHPLC-MS/MS in all tested samples. The main transformation reactions observed for difenoconazole were oxidation, dechlorination and hydroxylation in the environment. ECOSAR prediction and laboratory tests showed that the acute toxicities of four novel TPs on Brachydanio rerio, Daphnia magna and Selenastrum capricornutum are substantially lower than that of difenoconazole, while all the TPs except for TP277C were predicted chronically very toxic to fish, which may pose a potential threat to aquatic ecosystems. The results are important for elucidating the environmental fate of difenoconazole and assessing the environmental risks, and further provide guidance for scientific and reasonable use.
Sammendrag
Aquaculture has undergone rapid development in the past decades. It provides a large part of high-quality protein food for humans, and thus, a sustainable aquaculture industry is of great importance for the worldwide food supply and economy. Along with the quick expansion of aquaculture, the high fish densities employed in fish farming increase the risks of outbreaks of a variety of aquatic diseases. Such diseases not only cause huge economic losses, but also lead to ecological hazards in terms of pathogen spread to marine ecosystems causing infection of wild fish and polluting the environment. Thus, fish health is essential for the aquaculture industry to be environmentally sustainable and a prerequisite for intensive aquaculture production globally. The wide use of antibiotics and drug residues has caused intensive pollution along with risks for food safety and increasing antimicrobial resistance. Vaccination is the most effective and environmentally friendly approach to battle infectious diseases in aquaculture with minimal ecological impact and is applicable to most species of farmed fish. However, there are only 34 fish vaccines commercially available globally to date, showing the urgent need for further development of fish vaccines to manage fish health and ensure food safety. Plant genetic engineering has been utilized to produce genetically modified crops with desirable characteristics and has also been used for vaccine production, with several advantages including cost-effectiveness, safety when compared with live virus vaccines, and plants being capable of carrying out posttranslational modifications that are similar to naturally occurring systems. So far, plant-derived vaccines, antibodies, and therapeutic proteins have been produced for human and animal health. However, the development of plant-made vaccines for animals, especially fish, is still lagging behind the development of human vaccines. The present review summarizes the development of fish vaccines currently utilized and the suitability of the plant-production platform for fish vaccine and then addresses considerations regarding fish vaccine production in plants. Developing fish vaccines by way of plant biotechnology are significant for the aquaculture industry, fish health management, food safety, and human health.
Sammendrag
Forest harvest residue is a low-competitive biomass feedstock that is usually left to decay on site after forestry operations. Its removal and pyrolytic conversion to biochar is seen as an opportunity to reduce terrestrial CO2 emissions and mitigate climate change. The mitigation effect of biochar is, however, ultimately dependent on the availability of the biomass feedstock, thus CO2 removal of biochar needs to be assessed in relation to the capacity to supply biochar systems with biomass feedstocks over prolonged time scales, relevant for climate mitigation. In the present study we used an assembly of empirical models to forecast the effects of harvest residue removal on soil C storage and the technical capacity of biochar to mitigate national-scale emissions over the century, using Norway as a case study for boreal conditions. We estimate the mitigation potential to vary between 0.41 and 0.78 Tg CO2 equivalents yr−1, of which 79% could be attributed to increased soil C stock, and 21% to the coproduction of bioenergy. These values correspond to 9–17% of the emissions of the Norwegian agricultural sector and to 0.8–1.5% of the total national emission. This illustrates that deployment of biochar from forest harvest residues in countries with a large forestry sector, relative to economy and population size, is likely to have a relatively small contribution to national emission reduction targets but may have a large effect on agricultural emission and commitments. Strategies for biochar deployment need to consider that biochar's mitigation effect is limited by the feedstock supply which needs to be critically assessed.
Forfattere
Gunnhild Jaastad Jorunn Børve Ingunn Øvsthus Tage Thorstensen Erik J. Joner Ivar PettersenSammendrag
Det er ikke registrert sammendrag
Forfattere
Wiktoria Kaczmarek-Derda Zahra Bitarafan Belachew Asalf Tadesse Marit Skuterud Vennatrø Erik J. Joner Tobias Glemming Hans Kristian WestrumSammendrag
Det er ikke registrert sammendrag
Forfattere
Hang Su Andre van Eerde Hege Særvold Steen Inger Heldal Sissel Haugslien Irene Ørpetveit Stefanie Caroline Wüstner Makoto Inami Marie Løvoll Espen Rimstad Jihong Liu ClarkeSammendrag
Cardiomyopathy syndrome (CMS) is a severe cardiac disease occurring in the grow-out sea phase of farmed Atlantic salmon with approximately 100 outbreaks annually in Norway. Piscine myocarditis virus (PMCV) is believed to be the causative agent of CMS. There is no vaccine available to control CMS, partially because PMCV withstands propagation in known cell cultures. In the present study, we selected the putative capsid protein of PMCV as the candidate antigen for immunization experiments and produced it in the plant Nicotiana benthamiana by transient expression. The recombinant PMCV antigen formed virus-like particles (VLPs). To evaluate the efficacy of the plant made VLP vaccine, a PMCV infection model was established. In an experimental salmon vaccination trial, the VLP vaccine triggered innate immunity, and indicative but not significant inhibition of viral replication in heart, spleen and kidney tissues was observed. Similarly, a reduction of inflammatory lesions in cardiomyocytes and subendocardial infiltration by mononuclear leukocytes were observed. Therefore, there was no difference in efficacy or immune response observed post the plant made PMCV VLP antigen vaccination. Taken together, this study has demonstrated that plant made VLP antigens should be investigated further as a possible platform for the development of PMCV antigens for a CMS vaccine.
Forfattere
Siv Kristin Sællmann Iselin Elise Fjeld Ellen Johanne Svalheim Trygve S. Aamlid Olaug Bollestad Maren Hersleth HolsenSammendrag
Forskerne kunne tjuedoblet produksjonen av norske markblomster, men mangler fortsatt midler. I fem år har de ventet på en lovet plan mot insektdød fra regjeringen.