Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2021

Sammendrag

Growing environmental concerns have prompted governments to make sustainable choices in agricultural resource use. Evaluating the sustainability of agricultural systems is a key issue for the implementation of policies and practices aimed at revealing sustainability. This study aimed to evaluate the performance of Norwegian dairy farms, accounting for marginal effects of environmental (exogenous) variables. We adopted the dynamic parametric approach within the input distance function framework to estimate the performance of Norwegian dairy farms, focusing on the technical efficiency and determinates. For comparison, we also estimated the static parametric model, which was used by previous studies. We used unbalanced farm-level panel data for the period 2000–2018. The result shows a mean technical efficiency score of 0.92 for the dynamic model and 0.87 for the static models. The empirical result shows that the previous studies that focused on the static model reported a biased result on the performance of dairy farms. The dynamic efficiency score suggests that Norwegian dairy farms can reduce the input requirement of producing the average output by 8% if the operation becomes technically efficient. The environmental variables have a different effect on the performance of the farmers; thus, policymakers need to place special focus on these variables for the sustainable development of the dairy sector.

Til dokument

Sammendrag

Thermal modification is a well-established commercial technology for improving the dimensional stability and durability of timber. Numerous reviews of thermally modified timber (TMT) are to be found in the scientific literature, but until now a review of the influence of cell wall moisture content during the modification process on the properties of TMT has been lacking. This paper reviews the current state of knowledge regarding the hygroscopic and dimensional behaviour of TMT modified under dry (cell wall at nearly zero moisture content) and wet (cell wall contains moisture) conditions. After an overview of the topic area, the review explores the literature on the thermal degradation of the polysaccharidic and lignin components of the cell wall, as well as the role of extractives. The properties of TMT modified under wet and dry conditions are compared including mass loss, hygroscopic behaviour and dimensional stability. The role of hydroxyl groups in determining the hygroscopicity is discussed, as well as the importance of considering the mobility of the cell wall polymers and crosslinking when interpreting sorption behaviour. TMT produced under wet processing conditions exhibits behaviour that changes when the wood is subjected to water leaching post-treatment, which includes further weight loss, changes in sorption behaviour and dimensional stability, but without any further change in accessible hydroxyl (OH) content. This raises serious questions regarding the role that OH groups play in sorption behaviour.