Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2023

Til dokument

Sammendrag

Wood decomposing fungi differ in their substrate affinities, but to what extent factors like wood properties influence host specialization, compared to climate, is largely unknown. In this study, we analysed British field observations of 61 common wood decay species associated with 41 tree and shrub genera. While white rot fungi ranged from low-to high-substrate affinity, brown rot fungi were exclusively mid-to high-affinity. White rot fungi associated with dead fallen wood demonstrated the least substrate affinity. The composition of wood decomposer fungi was mostly structured by substrate properties, sorted between angiosperms and conifers. Any relationships with temporal and regional climate variability were of far less significance, but did predict community-based and substrate-usage host shifts, especially for fungi on fallen deadwood. Our results demonstrate that substrate shifts by wood-decay fungi will depend primarily upon their degree of affinity to, and the distribution of, related woody genera, followed less at regional levels by climate impacts.

Til dokument

Sammendrag

The European spruce bark beetle Ips typographus and the North American spruce beetle Dendroctonus rufipennis cause high mortality of spruces on their native continents. Both species have been inadvertently transported beyond their native ranges. With similar climates and the presence of congeneric spruce hosts in Europe and North America, there is a risk that one or both bark beetle species become established into the non-native continent. There are many challenges that an introduced population of bark beetles would face, but an important prerequisite for establishment is the presence of suitable host trees. We tested the suitability of non-native versus native hosts by exposing cut bolts of Norway spruce (Picea abies), black spruce (Picea mariana) and white spruce (Picea glauca) to beetle attacks in the field in Norway and Canada. We quantified attack density, brood density and reproductive success of I. typographus and D. rufipennis in the three host species. We found that I. typographus attacked white and black spruce at comparable densities to its native host, Norway spruce, and with similar reproductive success in all three host species. In contrast, D. rufipennis strongly preferred to attack white spruce (a native host) but performed better in the novel Norway spruce host than it did in black spruce, a suboptimal native host. Our results suggest that I. typographus will find abundant and highly suitable hosts in North America, while D. rufipennis in Europe may experience reduced reproductive success in Norway spruce.

Til dokument

Sammendrag

The anaerobic digestion of organic materials produces biogas; however, optimizing methane (CH4) content within biogas plants by capturing carbon dioxide (CO2) is one of the challenges for sustainable biomethane production. CH4 is separated from biogas, which is called biogas upgrading for biomethane production. In this regard, in-situ CO2 capture and utilization could be an alternative approach that can be achieved using conductive particles, where the conductive particles support the direct intraspecific electron transfer (DIET) to promote CH4 production. In this investigation, a carbon nanotube (CNT) was grown over conductive activated carbon (AC). Then an iron (Fe) nanoparticle was anchored (AC/CNT/Fe), which ultimately supported microbes to build the biofilm matrix, thereby enhancing the DIET for CH4 formation. The biogas production and CH4 content increased by 17.57 % and 15.91 %, respectively, when AC/CNT/Fe was utilized. Additionally, 18S rRNA gene sequencing reveals that Methanosarcinaceae and Methanobacteriaceae families were the most dominant microbes in the reactor when conductive particles (AC/CNT/Fe) were applied. The proposed study supports the stable operation of biogas plants to utilize CO2 for CH4 production by using surface-modified material.

Til dokument

Sammendrag

Soil loss by erosion threatens food security and reduces the environmental quality of water bodies. Prolonged and extreme rainfalls are recognized as main drivers of soil erosion, and climate change predictions for large parts of the world foresee such increases in precipitation. Erosion rates are additionally affected by land use, which may change as a result of the shift from a fossil fuel-based economy to an economy relying on using renewable biomass, a “Bioeconomy”. In this study we aimed at investigating, through modelling, i) if future changes in land use, due to a bioeconomy, would increase the risk for soil loss and enhance suspended sediment yields in streams and ii) if these changes, when combined with climate change effects, would further aggravate suspended sediment conditions in a catchment. We used hydrological and bias adjusted climate models to compare the effect of seven land use pathways on discharge and sediment transport relative to a baseline scenario under present and future climate conditions. The study was carried out based on data from a small headwater stream, representative for cereal production areas of S-E Norway. By modelling our scenarios with the PERSiST and INCA-P models, we found that land use change had a greater influence on both future water discharge and sediment losses than a future climate. Changes from climate showed strongest differences on a seasonal basis. Out of the modelled land use pathways, a sustainable pathway manifested the least occurrence of extreme flood and sediment loss events under future climate; whereas a pathway geared towards self-sufficiency indicated the highest occurrence of such extreme events. Our findings show that careful attention must be placed on the land use and soil management in the region. To maintain freshwater quality, it will be increasingly important to implement environmental mitigation measures.