Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2020
Sammendrag
The triploid pear cultivar ‘Ingeborg’ is currently the main commercial pear cultivar grown in Norway. However, fruit set and subsequent yields of this cultivar have proven to be variable and overall rather low. In order to promote the fruit set, different bioregulators were applied during and after bloom and compared with an untreated control. Investigations were done during the period 2017-2018, at NIBIO Ullensvang, western Norway. Different dosages of both gibberellins (GA3, trade name GIBB 3, 10% active ingredient (a.i.) and GA4/7, trade name Novagib®, 1% a.i.) were applied at full bloom and at petal fall. Additional applications of the growth retardant prohexadioneCa (trade name Regalis®, 10% a.i.) were applied twice, when bourse shoots had 3-5 leaves and after one month later. Ethephon (Cerone (480 g a.i. L-1)) was applied three times starting about 7 days after petal fall with ca. 7- to 10-day intervals. All gibberellin applications significantly increased fruit set compared to the untreated control. One single application with GA3 (3 g ha-1) almost tripled the fruit number per 100 flower clusters when compared with the control (136 and 46, respectively). The yield response was similar (16.8 to 9.6 kg tree-1, respectively). Similar results occurred with one application of GA4/7 (12 g ha-1) with the same crop load level, and the fruit weights were similar to the control (130 g). Prohexadione-Ca treatments significantly reduced shoot growth of the pear trees. Two treatments with 125 g ha-1 or one treatment of 250 g ha-1 reduced the growth by ~35% but had no significant effect on fruit set and yield. The multiple ethephon applications (275 mL ha-1 in total) had no effect on both set and shoot growth, and return bloom compared to the untreated or gibberellin treated trees.
Forfattere
Jan Emblemsvåg Nina Pereira Kvadsheim Jon Halfdanarson Matthias Koesling Bjørn Tore Nystrand Jan Sunde Celine ReboursSammendrag
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Forfattere
Robert Jankowiak Halvor Solheim Piotr Bilański Seonju Marincowitz Michael J. WingfieldSammendrag
During surveys of insect-associated mycobiomes in Norway, Poland, and Russia, isolates with affinity to Graphilbum (Ophiostomatales, Ascomycota) were recovered. In this study, eight known Graphilbum species as well as the newly collected isolates were compared based on morphology and DNA sequence data for four gene regions. The results revealed seven new species, described here as G. acuminatum, G. carpaticum, G. curvidentis, G. furuicola, G. gorcense, G. interstitiale, and G. sexdentatum. In addition to these species, G. crescericum and G. sparsum were commonly found in Norway. All new species were recovered from conifers in association with bark beetles, cerambycid beetles, and weevils and were morphologically similar, predominantly with pesotum-like asexual morphs. Where sexual morphs were present, these were small ascomata with short necks and rodshaped ascospores having hyaline sheaths. The results suggest that Graphilbum species are common members of the Ophiostomatales in conifer ecosystems.
Forfattere
Beata Strzałka Robert Jankowiak Piotr Bilański Nikita Patel Georg Hausner Riikka Linnakoski Halvor SolheimSammendrag
Bark beetles belonging to the genus Dryocoetes (Coleoptera, Curculionidae, Scolytinae) are known vectors of fungi, such as the pathogenic species Grosmannia dryocoetidis involved in alpine fir (Abies lasiocarpa) mortality. Associations between hardwood-infesting Dryocoetes species and fungi in Europe have received very little research attention. Ectosymbiotic fungi residing in Ceratocystiopsis and Leptographium (Ophiostomatales, Sordariomycetes, Ascomycota) were commonly detected in previous surveys of the Dryocoetes alni-associated mycobiome in Poland. The aim of this study was to accurately identify these isolates and to provide descriptions of the new species. The identification was conducted based on morphology and DNA sequence data for six loci (ITS1-5.8S, ITS2-28S, ACT, CAL, TUB2, and TEF1-α). This revealed two new species, described here as Ceratocystiopsis synnemata sp. nov. and Leptographium alneum sp. nov. The host trees for the new species included Alnus incana and Populus tremula. Ceratocystiopsis synnemata can be distinguished from its closely related species, C. pallidobrunnea, based on conidia morphology and conidiophores that aggregate in loosely arranged synnemata. Leptographium alneum is closely related to Grosmannia crassivaginata and differs from this species in having a larger ascomatal neck, and the presence of larger club-shaped cells.
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Radosav Cerovic Milica Fotiric Akšic Mekjell MelandSammendrag
Det er ikke registrert sammendrag
Forfattere
Haftamu Gebretsadik Gebrehiwot Jens Bernt Aune Ole Martin Eklo Torfinn Torp Lars Olav BrandsæterSammendrag
Det er ikke registrert sammendrag
Sammendrag
114 plante- og dyrearter er forsvunnet i Norge de siste to hundre årene. Mange av disse hadde sine liv i slåttemarker. Nå må statsansatte gjøre som fortidens gårdbrukere, for å hindre at flere arter dør ut.
Sammendrag
Understanding the factors that determine species’ resistance to environmental change is of utmost importance for biodiversity conservation. Here we investigated how the abundances of marshland species are determined by niche properties and functional traits. We re-surveyed 150 vegetation plots that were first surveyed in 1973 in order to explore species abundance changes over time. We found that the mean water level in the habitats of most studied species decreased significantly from 1973 to 2012. Nine of 17 target species were identified as abundance decreasing species and the other eight as abundance increasing species. The comparisons of seven plant characteristics (niche position water level, plant height, and five leaf traits) showed that the decreasing species had a significantly higher value of optimum water level and marginally significantly lower leaf N contents and specific leaf area (SLA) than those in increasing species. The stepwise regression analysis showed that optimum water level and leaf N were the best predictors of abundance changes of marsh plant species, as well as that the effect of optimum water level was stronger than that of leaf N. Our findings demonstrated that niche properties may be important for forecasting changes in wetland plant communities over time.