Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2021

Til dokument

Sammendrag

1. It is common practice for ecologists to examine species niches in the study of community composition. The response curve of a species in the fundamental niche is usually assumed to be quadratic. The centre of a quadratic curve represents a species' optimal environmental conditions, and the width its ability to tolerate deviations from the optimum. 2. Most multivariate methods assume species respond linearly to niche axes, or with a quadratic curve that is of equal width for all species. However, it is widely understood that some species have the ability to better tolerate deviations from their optimal environment (generalists) compared to other (specialist) species. Rare species often tolerate a smaller range of environments than more common species, corresponding to a narrow niche. 3. We propose a new method, for ordination and fitting Joint Species Distribution Models, based on Generalized Linear Mixed-effects Models, which relaxes the assumptions of equal tolerances. 4. By explicitly estimating species maxima, and species optima and tolerances per ecological gradient, we can better explore how species relate to each other.

Til dokument

Sammendrag

Although artificial-selection experiments seem well suited to testing our ability to predict evolution, the correspondence between predicted and observed responses is often ambiguous due to the lack of uncertainty estimates. We present equations for assessing prediction error in direct and indirect responses to selection that integrate uncertainty in genetic parameters used for prediction and sampling effects during selection. Using these, we analyzed a selection experiment on floral traits replicated in two taxa of the Dalechampia scandens (Euphorbiaceae) species complex for which G-matrices were obtained from a diallel breeding design. After four episodes of bidirectional selection, direct and indirect responses remained within wide prediction intervals, but appeared different from the predictions. Combined analyses with structural-equation models confirmed that responses were asymmetrical and lower than predicted in both species. We show that genetic drift is likely to be a dominant source of uncertainty in typically-dimensioned selection experiments in plants and a major obstacle to predicting short-term evolutionary trajectories.

Til dokument

Sammendrag

Studies in natural populations are essential to understand the evolutionary ecology of senescence and terminal allocation. While there are an increasing number of studies investigating late-life variation in different life-history traits of wild populations, little is known about these patterns in social behaviour. We used long-term individual based data on yellow-bellied marmots (Marmota flaviventer) to quantify how affiliative social behaviours and different life-history traits vary with age and in the last year of life, and how patterns compare between the two. We found that some social behaviours and all life-history traits varied with age, whereas terminal last year of life effects were only observed in life-history traits. Our results imply that affiliative social behaviours do not act as a mechanism to adjust allocation among traits when close to death, and highlight the importance of adopting an integrative approach, studying late-life variation and senescence across multiple different traits, to allow the identification of potential trade-offs. This article is part of the theme issue ‘Ageing and sociality: why, when and how does sociality change ageing patterns?’

Til dokument

Sammendrag

1. Ecological network structure is maintained by a generalist core of common species. However, rare species contribute substantially to both the species and functional diversity of networks. Capturing changes in species composition and interactions, measured as turnover, is central to understanding the contribution of rare and common species and their interactions. Due to a large contribution of rare interactions, the pairwise metrics used to quantify interaction turnover are, however, sensitive to compositional change in the interactions of, often rare, peripheral specialists rather than common generalists in the network. 2. Here we expand on pairwise interaction turnover using a multi-site metric that enables quantifying turnover in rare to common interactions (in terms of occurrence of interactions). The metric further separates this turnover into interaction turnover due to species turnover and interaction rewiring. 3. We demonstrate the application and value of this method using a host–parasitoid system sampled along gradients of environmental modification. 4. In the study system, both the type and amount of habitat needed to maintain interaction composition depended on the properties of the interactions considered, that is, from rare to common. The analyses further revealed the potential of host switching to prevent or delay species loss, and thereby buffer the system from perturbation. 5. Multi-site interaction turnover provides a comprehensive measure of network change that can, for example, detect ecological thresholds to habitat loss for rare to common interactions. Accurate description of turnover in common, in addition to rare, species and their interactions is particularly relevant for understanding how network structure and function can be maintained.

Til dokument

Sammendrag

We sow or plant vascular plant species on a large scale in revegetation and restoration projects in Norway today. Some of the species used are already found in Norway, but many of the species, subspecies or populations used though native are not local, that is, they are regionally alien. A regionally alien species is a species that is native to Norway (has been in Norway since 1800) somewhere in the country, but which has been spread by humans to places in Norway where they do not occur. In theory, and according to the Biodiversity Act, it is desirable to use local seeds or plants to preserve local biodiversity. The aim of this report is to define guidelines that helps prevent the planting of vascular plant species with a high potential for negative effects on local biodiversity. It is assumed that the native or local populations are better adapted to local environmental conditions than populations from other areas or regions, and the risk of harmful genetic changes is therefore considered small when using local plant and seed sources. Arriving at a common definition for the area within which plants are “local” is difficult, though; vascular plant species are numerous (3317 species in mainland Norway, of which more than half are alien species introduced after 1800, Artdatabanken 2015), have different growth forms, different environmental requirements, and different reproductive and dispersal ecology. Even closely related vascular plant species can differ in such characteristics and hence in the extent of the "place" or “area”. The dispersal ecology of a plant species is of great importance for whether the species has genetically distinct populations within its range or not. Different strategies (wind pollination vs. insect pollination, vegetative propagation vs. seed dispersal, large seeds vs. small seeds) have an impact on the degree of gene flow between populations and thus also how locally adapted the species is in different areas. Whether the species has primarily vegetative reproduction or whether it spreads mainly by means of seeds, and whether the seed dispersal takes place ballistically, with wind or water, or by zookori (attached to animals or eaten by animals) determines how far the species can spread and how large gene flow there is between different populations. Whether the species is pollinated by wind or by the help of insects also affects the degree of gene flow differently. In Norway, there is great variation in many biophysical and ecological conditions (climate, topography, hydrology, and geology) over relatively short distances. This means that species that grow only a few meters apart can grow under different environmental conditions. This large variation in environmental conditions - on different spatial scales - can give rise to local genetic adaptation. However, plants have been moved around the landscape for several hundred years by our livestock (as seeds in fur and hooves, and in faeces) from lowland pasture to mountain pasture and along traffic arteries across the country due to the extensive transport of animals and people. Over time, this has led to expanded geographical distribution for several species and increased gene flow between populations over relatively large distances. .............

Til dokument

Sammendrag

Introduction Atlantic salmon in the River Klarälven in Sweden live the entire life in freshwater, undertaking feeding migrations to Lake Vänern. The upper part of the watershed is in Norway and comprises the River Trysilelva and associated rivers and lakes. Atlantic salmon previously lived in the Norwegian part of the watershed but were lost due to the construction of 11 hydropower stations that block the upstream migration from Vänern. The power stations also cause a high mortality among downstream migrating fish. Tagging studies showed that there is 71-84% mortality of juveniles (smolts) and 100% mortality of adults during downstream migration past the eight lowermost power stations. Extensive mitigation measures are needed to reduce the mortality of downstream migrants and reestablish a population that can reach areas in Norway naturally without being captured in Sweden and transported to Norway. In 2015, the total costs of establishing fishways bypassing the power stations and securing safe downstream migration was estimated to be 1000 million SEK. To compensate for a decline of salmon due to lost habitat, hatchery-produced juveniles have been released in the watershed for more than 100 years, and adult salmon have been captured in the lower reaches of Klarälven and released in upstream reaches. After the Höljes power station was built, 80% of the salmon transported upstream were released upstream of Höljes. In 1993, the Norwegian government stopped these releases due to the large mortality of downstream migrating fish at the power stations. The releases had already been stopped from late summer 1988 due to bacterial kidney disease (BKD) outbreaks in salmon populations in the watershed. Since 1988, transported fish have been released upstream of Edsforsen in Sweden, and have not been able to reach Norway. Aim of report The Norwegian Environment Agency asked VKM to carry out a risk assessment of three specified methods that can be used to reestablish salmon in the Norwegian part of the watershed. This risk assessment is pertinent because the occurrence of alien organisms and infectious agents have developed differently in the Swedish and Norwegian parts of the watershed after salmon became unable to migrate through the river system. In 2013, the fish parasite Gyrodactylus salaris was detected in Klarälven, but has not been recorded in Norwegian parts of the watershed. Here, we assess the risk of negative impacts on native biodiversity by importing Atlantic salmon eggs or live adults from Klarälven to Norway. Three methods of importing eggs or adults were assessed: I. Import of fertilised eggs to a local hatchery in Norway, which are planted in the river in the spring or hatched and released as juveniles or smolts. II. Import of fertilised eggs that will be used to establish a long-term broodstock in Norway using the gene bank model, from which eggs can be planted into the river, or transferred to a local hatchery with subsequent release of juveniles or smolts. III. Import of adult salmon spawners that are captured in the lower parts of Klarälven in Sweden, transported in tanks and released in the Norwegian parts of the watershed. Methods The risk assessment was based on a literature review and qualitative assessment of each of the three methods of importing eggs or adults. The risk of impacts on native biodiversity and ecosystems was assessed for infectious agents, including parasites, bacterial pathogens, and viruses, and for other alien species. For each of the infectious agents and alien species, the risk is based on the product of the magnitude of the potential negative impact to native biodiversity and ecosystems, and the likelihood that negative consequences occur. The risk assessment concludes in terms of low, moderate, or high risk. .......................

Til dokument

Sammendrag

Key words: Risk assessment, Crayfish, Shrimps, Crabs, Climate change, Aphanomyces astaci, White spot syndrome, Alien species, Biological invasion Introduction The Norwegian Scientific Committee for Food and Environment (VKM) was requested by the Norwegian Environment Agency to assess the risk of negative impacts to biodiversity in Norway resulting from import of crustacean decapods for keeping in freshwater aquariums. VKM was asked to 1) list species of crayfish, crabs and shrimps that are currently kept in freshwater aquaria in Norway, and species that are likely to be kept in freshwater aquaria in Norway within the next 10 years, 2) assess the ability of the species to survive under Norwegian conditions and cause impacts on ecosystems and other species, and 3) state the potential negative effects on the biological diversity of diseases caused by pathogens, regulated under the Norwegian Food Act. Methods The risk assessment, without focus on pathogens, was performed in two steps. First, we used a pre-screening toolkit to identify species of crayfish, crabs and shrimps with potential to become invasive in freshwater habitats in Norway. Each species was given an invasiveness score based on 55 questions on biogeography, ecology, and climate change. In a second step, a full risk assessment, including the potential impacts of pathogens, was conducted on those species receiving the highest invasiveness score. This assessment included questions on the organism’s probability of entry and pathways of entry, establishment and spread, potential impacts on biodiversity, and how climate change scenarios might affect the assessment. Likelyhood and confidence was assessed for each question. In conclusion, each species was designated as either low-, moderate-, or high risk. Many crustacean decapod species are confirmed or suspected carriers of pathogens that can cause mass mortality among native crustaceans. The risk posed by crustaceans as carriers of pathogens may be independent of the environmental risk that they pose through ecological interactions. Therefore, the four crustacean disease pathogens that are regulated under the Norwegian Food Act, were assessed separately. These include Aphanomyces astaci causing crayfish plague, white spot syndrome virus (WSSV) causing white spot disease, Taura syndrome virus (TSV) causing Taura syndrome, and yellow head virus genotype 1 (YHV1) causing yellow head disease. The assessments comprised questions on the pathogen’s probability of entry (as a hitchhiker organism with imported crustaceans), pathways of entry, establishment and spread, and potential impact on crustacean biodiversity. Likelihood and confidence were assessed for each question. In conclusion, each pathogen was designated as either low-, moderate-, or high risk. In a third step, we categorized the likelihood that a crustacean species introduces a pathogen associated with a high- or moderate risk into: I) known chronic carriers, II) suspected chronic carriers, III) suspected situational carrier, IV) possible pathogen transmitters, and V) no direct or circumstantial evidence for carrier status or pathogen transmission in the genus. Results Based on information from the Norwegian Pet Trade Association, the project group listed 112 taxa (mainly species and some genera) of freshwater crayfish, crabs and shrimps that are relevant for trade in Norway. These included 38 crayfish taxa, 28 crab taxa, and 45 shrimp taxa. In addition, one marine crab was included. Sixteen species of crayfish, four species of shrimps, and two species of crabs underwent a full ecological risk assessment. The probabilities of entry both into the aquarium trade in Norway, and potentially further into Norwegian nature, were based on the prevalence of the species in the aquarium trade in Norway. We assumed that all species were equally likely to escape captivity or to be .........

Til dokument

Sammendrag

A recurrent concern in nature conservation is the potential competition for forage plants between wild bees and managed honey bees. Specifically, that the highly sophisticated system of recruitment and large perennial colonies of honey bees quickly exhaust forage resources leading to the local extirpation of wild bees. However, different species of bees show different preferences for forage plants. We here summarize known forage plants for honey bees and wild bee species at national scale in Denmark. Our focus is on floral resources shared by honey bees and wild bees, with an emphasis on both threatened wild bee species and foraging specialist species. Across all 292 known bee species from Denmark, a total of 410 plant genera were recorded as forage plants. These included 294 plant genera visited by honey bees and 292 plant genera visited by different species of wild bees. Honey bees and wild bees share 176 plant genera in Denmark. Comparing the pairwise niche overlap for individual bee species, no significant relationship was found between their overlap and forage specialization or conservation status. Network analysis of the bee-plant interactions placed honey bees aside from most other bee species, specifically the module containing the honey bee had fewer links to any other modules, while the remaining modules were more highly inter-connected. Despite the lack of predictive relationship from the pairwise niche overlap, data for individual species could be summarized. Consequently, we have identified a set of operational parameters that, based on a high foraging overlap (>70%) and unfavorable conservation status (Vulnerable+Endangered+Critically Endangered), can guide both conservation actions and land management decisions in proximity to known or suspected populations of these species.