Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2023

Sammendrag

Purpose of Review Forestry in northern temperate and boreal regions relies heavily on conifers. Rapid climate change and associated increases in adverse growing conditions predispose conifers to pathogens and pests. The much longer generation time and presumably, therefore, lower adaptive capacity of conifers relative to their native or non-native biotic stressors may have devastating consequences. We provide an updated overview of conifer defences underlying pathogen and pest resistance and discuss how defence traits can be used in tree breeding and forest management to improve resistance. Recent Findings Breeding of more resilient and stress-resistant trees will benefit from new genomic tools, such as genotyping arrays with increased genomic coverage, which will aid in genomic and relationship-based selection strategies. However, to successfully increase the resilience of conifer forests, improved genetic materials from breeding programs must be combined with more flexible and site-specific adaptive forest management. Summary Successful breeding programs to improve conifer resistance to pathogens and pests provide hope as well as valuable lessons: with a coordinated and sustained effort, increased resistance can be achieved. However, mechanisms underlying resistance against one stressor, even if involving many genes, may not provide any protection against other sympatric stressors. To maintain the adaptive capacity of conifer forests, it is important to keep high genetic diversity in the tree breeding programs. Choosing forest management options that include diversification of tree-species and forest structure and are coupled with the use of genetically improved plants and assisted migration is a proactive measure to increase forest resistance and resilience to foreseen and unanticipated biotic stressors in a changing climate.

Sammendrag

Epigenetic modification is an important mechanism that allows plants to rapidly adapt to changes in environment. This modification can provide long-term increased tolerance and resistance to abiotic and biotic stress and may even be transmittable to progeny. Knowledge on how epigenetic memory is established, maintained, triggered, and transmitted in plants with different evolutionary and life histories is important for understanding and utilizing epigenetic adaptation in plant protection. In this symposium, we welcome talks from those that provide insight into the molecular mechanism underlying epigenetic memory to those that present the practical aspects of implementing epigenetic adaptation in the field.

Til dokument

Sammendrag

This study applied comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOF-MS) for the analysis of 100 pesticides (77 organophosphorus and 23 organochlorines) in six typical plant matrices with high protein, starch, acid, or oil content. Different sorbents were evaluated in the clean-up step of the QuEChERS method, and optimized sorbent combinations were obtained for each individual matrix. Good linearity of the calibration curves of matrix-matched was obtained (R2 ≥ 0.9853). The mean recoveries and relative standard deviations at fortification levels of 10 and 50 μg/kg ranged from 72.6 to 117.5 and 0.1 to 19.9%, respectively. Phenolic antioxidants, glycosides, phosphorus esters, linoleic acid, unsaturated fatty acids, and other interferences in the individual plant matrix were identified. The results demonstrated that GC × GC-TOF-MS is helpful in the separation of the co-eluted pesticides and the identification of interferences in complex plant matrices.

Til dokument

Sammendrag

The legume cavalcade, Centrosema pascuorum, is used extensively as a cover crop and as a component of conservation agriculture systems. It is also an attractive rotation or cover crop for the management of root-knot nematodes (RKN; Meloidogyne spp.) as it is a non-host. RKN are persistent pests that are well known to be difficult to control. However, the mechanisms governing the non-host status of cavalcade is unknown. The current study established that cavalcade leaves are toxic to RKN as either aqueous extracts or soil amendments. Bioassays conducted using Meloidogyne javanica showed that a 90% concentration of aqueous extract derived from 1-month-old cavalcade leaves (89 mg crude extract ml−1) suppressed nematode hatch (82.9%) and killed infective second-stage juveniles of M. javanica (85.3%). Soil amendments with 1% (w/w) of 1-month-old cavalcade leaves (0.99 mg crude extract g−1 soil) also provided effective control of M. javanica in the glasshouse on okra. One-month-old leaves appeared more effective than 2- or 3-month-old leaves. The soil amendments had no adverse phytotoxic effect on okra seed germination. Our study demonstrates the potential for using cavalcade leaves or extracts to manage RKN. This may be due to the nematicidal activity of the various compounds in the leaves, such as flavonoids, phenols and terpenoids, which should be further assessed.

Til dokument

Sammendrag

Plants must adapt with increasing speed to global warming to maintain their fitness. One rapid adaptation mechanism is epigenetic memory, which may provide organisms sufficient time to adapt to climate change. We studied how the perennial Fragaria vesca adapted to warmer temperatures (28°C vs. 18°C) over three asexual generations. Differences in flowering time, stolon number, and petiole length were induced by warmer temperature in one or more ecotypes after three asexual generations and persisted in a common garden environment. Induced methylome changes differed between the four ecotypes from Norway, Iceland, Italy, and Spain, but shared methylome responses were also identified. Most differentially methylated regions (DMRs) occurred in the CHG context, and most CHG and CHH DMRs were hypermethylated at the warmer temperature. In eight CHG DMR peaks, a highly similar methylation pattern could be observed between ecotypes. On average, 13% of the differentially methylated genes between ecotypes also showed a temperature-induced change in gene expression. We observed ecotype-specific methylation and expression patterns for genes related to gibberellin metabolism, flowering time, and epigenetic mechanisms. Furthermore, we observed a negative correlation with gene expression when repetitive elements were found near (±2 kb) or inside genes. In conclusion, lasting phenotypic changes indicative of an epigenetic memory were induced by warmer temperature and were accompanied by changes in DNA methylation patterns. Both shared methylation patterns and transcriptome differences between F. vesca accessions were observed, indicating that DNA methylation may be involved in both general and ecotype-specific phenotypic variation.