Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2019

Sammendrag

Complex communities of microorganisms influence plant and agroecosystem health and productivity. Bacteria and fungi constitute a major part of the wheat head microbiome. A microorganism’s ability to colonize or infect a wheat seed is influenced by interacting microbiome. In Norway, wheat seed lots are routinely analysed for the infestation by Fusarium head blight and seedling blight diseases, such as Fusarium and Microdochium spp., and glume blotch caused by Parastagonospora nodorum using traditional methods (plating grain on PDA, recording presence or absence of fungal colonies) The purpose is to decide if the seed quality is suitable for sowing and whether seed treatment is needed. This method is time consuming, require knowledge within fungal morphology, and do not facilitate identification to species level in all cases. Molecular methods such as sequencing could allow detection and quantification of “all” microbial DNA, only limited by the specificity of the primers. Microbial profiling (metabarcoding) can be very time and cost-effective, since a mixture of many samples can be analysed simultaneously for both fungi and bacteria, and other microbes if required. In our project “Phytobiome” we used metabarcoding to analyse microbial communities in wheat heads and verify this information with results from qPCR and plate studies for a more complete study. Around 150 spring wheat seed lots from the years 2016-2017 (including two cultivars) were selected for analysis. One of the main objectives was to find microorganisms associated with seed germination. We will present findings from this work, but also some challenges when using PCR-based sequencing methods, especially regarding Fusarium head blight fungi.

Til dokument

Sammendrag

After harvesting, the Norwegian root vegetables are normally stored at refrigerated temperatures for 5 to 7 months. During this period, up to 30% of the products are lost. The goal is to reduce the diseases, the product loss and energy consumption, in addition to increase shelf-life and storage period. Twenty-eight commercial root vegetable cold-stores were instrumented to measure air temperature, relative humidity and product temperature. The study was done over two years. The cold-stores were located in four different regions of Norway. The three focus-products carrot, swede and celeriac were harvested from one field in each region in open wire nets. The nets were placed in the various cold-stores in the respective regions and put in the wooden bins together with the producer's own products. The quality and yield of the products were determined and correlated to the storage condition. The various storage condition negatively affects the respiration and quality of the root vegetables, storage-life, and influence on the cooling capacity of the refrigeration systems.