Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2023

Til dokument

Sammendrag

This report summarizes the status of biochar in forestry in the Nordic-Baltic countries today. Biochar is charred material formed by pyrolysis of organic materials. In addition to improving soil physical and chemical properties and plant growth, biochar is a promising negative emission technology for storing carbon (C) in soils. The report gives an overview of current and potential uses, production methods and facilities, legislation, current and future research as well as biochar properties and effects. Forests are both a source of feedstock for biochar production and a potential beneficiary for biochar use. Production is still limited in the Nordic-Baltic countries, but commercial production is on the rise and several enterprises are in the planning or start-up phase. In this report different biochar production technologies are described. As the (modern) use of biochar for agricultural and especially forestry purposes is relatively new, in many countries there are no specific legislation regulating its use. Sometimes the use of biochar is regulated through more general laws and regulations on e.g. fertilizers or soil amendment. However, both inside and outside EU several documents and standards exist, listing recommended physical and chemical limit values for biochar. So far, most biochar studies have been conducted on agricultural soils, though research in the forestry sector is starting to emerge. The first biochar field experiments in boreal forests support that wood biochar promotes tree growth. Also, studies on the use of biochar as an additive to the growing medium in tree nurseries show promising results. Because biochar C content is high, it is recalcitrant to decomposition, and application rates to soil can be high, biochar is a promising tool to enhance the C sequestration in boreal forests. However, available biomass and production costs may be barriers for the climate change mitigation potential of biochar. When it comes to effects on biodiversity, few field-based studies have been carried out. Some studies from the Nordic region show that biochar addition may affect microbial soil communities and vegetation, at least on a short time scale. There is clearly a need for more research on the effects of biochar in forestry in the Nordic-Baltic region. Long-term effects of biochar on e.g., forest growth, biodiversity, soil carbon and climate change mitigation potential should be studied in existing and new field experiments.

Til dokument

Sammendrag

A continuous production experiment was conducted in Norway with 48 Norwegian Red dairy cows in early- to mid-lactation, to investigate the effect of grass silage with lactic acid bacteria (LAB) or formic acid (FA) additives, on milk yield (MY) and milk protein yield (MPY). Grass wilted to 250 g dry matter (DM)/kg was inoculated with homofermentative LAB to obtain LAB silage, whilst FA silage was produced adding a FA-based additive. The two silages were fed ad libitum and supplemented with an average 10.3 kg of either high (H) or low (L) metabolizable protein (MP) concentrates, in a 2 ✗ 2 factorial arrangement of treatments. The treatments were LAB silage and L concentrate, LAB silage and H concentrate, FA silage and L concentrate and FA silage and H concentrate. The use of FA resulted in lower levels of residual water-soluble carbohydrates (WSC), and higher levels of ammonia nitrogen (NH3single bondN), compared to LAB. In situ results for FA silage showed lower rumen degradability of crude protein (CP), while gas in vitro results showed lower utilizable CP (uCP), compared to LAB silage (782 vs. 750 g/kg DM and 128 vs. 119 g/kg DM, respectively). The purine over creatinine (PDC) index did not indicate any effects on the microbial protein synthesis (MPS) from any of the treatments. The higher daily intake of FA silage (12.5 vs.13.7 kg DM for LAB and FA, respectively, P < 0.001), did not result in significant differences in daily MY (31.0 vs. 30.2 kg, P = 0.208), nor MPY (1.08 vs.1.07 kg/day, P = 0.878) for LAB and FA, respectively. Feeding H concentrate gave higher MPY (P = 0.036), higher urea in milk (P < 0.001), plasma (P < 0.001) and urine (P = 0.008) and tended to give higher MY (P = 0.063) for both silages. For amino acids (AA) in plasma, alanine was higher for FA silage than for LAB silage (P = 0.030), while histidine (P = 0.001), leucine (P = 0.015) and glutamine (P = 0.007) were higher for both silages when cows were fed H concentrate. In conclusion, the FA and LAB additives did not affect MY or MPY any differently. Feeding H concentrate resulted in higher MPY for both silages, but reduced nitrogen (N) efficiency.

Til dokument

Sammendrag

The management of infectious wildlife diseases often involves tackling pathogens that infect multiple host species. Chronic wasting disease (CWD) is aprion disease that can infect most cervid species. CWD was detected in reindeer (Rangifer tarandus) in Norway in 2016. Sympatric populations of red deer(Cervus elaphus) and moose (Alces alces) are at immediate risk. However, the estimation of spillover risk across species and implementation of multispecies management policies are rarely addressed for wildlife. Here, we estimated the broad risk of CWD spillover from reindeer to red deer and moose by quantifying the probability of co-occurrence based on both (1) population density and(2) habitat niche overlap from GPS data of all three species in Nordfjella,Norway. We describe the practical challenges faced when aiming to reduce the risk of spillover through a marked reduction in the population densities of moose and red deer using recreational hunters. This involves setting the popu-lation and harvest aims with uncertain information and how to achieve them.The niche overlap between reindeer and both moose and red deer was low overall but occurred seasonally. Migratory red deer had a moderate niche over-lap with the CWD-infected reindeer population during the calving period, whereas moose had a moderate niche overlap during both calving and winter. Incorporating both habitat overlap and the population densities of the respective species into the quantification of co-occurrence allowed for more spatially targeted risk maps. An initial aim of a 50% reduction in abundance for the Nordfjella region was set, but only a moderate population decrease of less than 20% from 2016 to 2021 was achieved. Proactive management in the form of marked population reduction is invasive and unpopular when involving species of high societal value, and targeting efforts to zones with a high risk ofspillover to limit adverse impacts and achieve wider societal acceptance is important. disease management, host range, moose, multihost pathogens, niche overlap, Norway,population estimation, red deer, reindeer

Til dokument

Sammendrag

Non-native pests, climate change, and their interactions are likely to alter relationships between trees and tree-associated organisms with consequences for forest health. To understand and predict such changes, factors structuring tree-associated communities need to be determined. Here, we analysed the data consisting of records of insects and fungi collected from dormant twigs from 155 tree species at 51 botanical gardens or arboreta in 32 countries. Generalized dissimilarity models revealed similar relative importance of studied climatic, host-related and geographic factors on differences in tree-associated communities. Mean annual temperature, phylogenetic distance between hosts and geographic distance between locations were the major drivers of dissimilarities. The increasing importance of high temperatures on differences in studied communities indicate that climate change could affect tree-associated organisms directly and indirectly through host range shifts. Insect and fungal communities were more similar between closely related vs. distant hosts suggesting that host range shifts may facilitate the emergence of new pests. Moreover, dissimilarities among tree-associated communities increased with geographic distance indicating that human-mediated transport may serve as a pathway of the introductions of new pests. The results of this study highlight the need to limit the establishment of tree pests and increase the resilience of forest ecosystems to changes in climate.

Til dokument

Sammendrag

Denne rapporten ble skrevet på oppdrag for Klimautvalget 2050. Rapporten er delt i 2 deler, hvor del 1 beskriver potensialet for økt karbonlagring i hav, og hvilke tiltak som kan bidra til å øke karbonopptaket. Del 2 beskriver hvilke interessenter som potensielt vil bli påvirket av tiltak for økt karbonlagring. Tareskoger, tang, ålegrasenger og tidevannseng og -sump er marine økosystemer som lagrer karbon. Det skilles mellom kortidslagret karbon som er karbon lagret i levende biomasse, og langtidslagret karbon som er karbon lagret i sedimenter på havbunnen. Det mangler forskning som estimerer potensialet for karbonlagring i hav, samt hvor mye som lagres per år i de forskjellige økosystemene. På verdensbasis utgjør tang og tare de største marine økosystemene. Karbonlagring i Norge kan potensielt spille en større rolle enn andre steder i verden, da det kalde klimaet bidrar til å senke nedbrytningshastigheten. Det er flere tiltak som kan gjøres for å redusere tap av lagret karbon og øke opptaket av karbon. Blant annet vil restaurering, redusere beitetrykk fra kråkeboller, redusere avrenning fra land, redusere marin utbygging og redusere bunntråling være tiltak som kan være positiv for karbonlagringen i havet. Havnæringen er en viktig del av norsk næringsliv og i mange kystsamfunn utgjør havnæringen en viktig del av arbeidsplassene. Fiskeri og havbruk vil potensielt kunne kombinere taredyrking med akvakultur, samtidig som nyetablerte tareskoger vil kunne gi habitat til en rekke arter som således vil være positivt for fritidsfiske. Utslipp fra akvakultur kan potensielt tilføre mye næringssalter og tiltak om å redusere utslipp av næringssalter vil således ramme havbruksnæringen. Redusert utbygging vil kunne ramme havbruksnæringen. Naturmiljø vil stor sett være positivt påvirket av tiltak som øker karbonlagring og reduserer tap. Skipsfart har stort sett liten interessekonflikt med tiltak. Havvind vil potensielt påvirkes mest i utbyggingsfasen, særlig ved bunnfast havvind nær kysten. Oljenæringen vil kunne påvirke det langtidslagret karbonet på havbunnen, når det bores etter olje. Mineralutvinning og georessurser vil kunne påvirke marine økosystemer om mineralutvinningen skjer nærme kysten. Ved mineralutvinning lengre ut til havs kan langtidslagret karbon påvirkes og tilføres vannmassene. Reise og friluftslivs vil kunne påvirkes positivt ved at naturopplevelser bevares, samtidig som de vil kunne rammes av reguleringer i utslipp og utbygging. Kulturminner og kulturmiljø vil potensielt komme i konflikt med restaureringer av marine økosystemer, men ellers være positivt påvirket av redusert utbygging og redusert bunntråling. Infrastruktur i havet, slik som undersjøiske kabler vil kunne gi en interessekonflikt spesielt under utbyggingt ved at det påvirker marine økosystemer og langtidslagret karbon, men vil være positivt påvirket av redusert bunntråling, da det reduserer faren for at infrastrukturen ødelegges.

Til dokument

Sammendrag

Macroalgae, or seaweeds, have potential for use as feed ingredients and are currently unexploited despite their content of vitamins, minerals, and protein. Brown species can accumulate iodine from seawater and there are strict limits set by the European Food Safety Authority and the FDA regarding iodine content in animal feeds. Iodine can cause health problems for consumers if over or under-consumed and its presence in end food products is strictly regulated. The aim of the present experiment was to gain knowledge on intake, distribution, and excretion of iodine in sheep supplemented with Laminaria hyperborea by-product known to contain iodine. Twelve Norwegian White Sheep male lambs, four months of age, were blocked according to initial live weight (average 37.8 kg) and randomly allocated to two diet groups. Animals were fed gras silage and concentrate, without (CTR) and including the alga by-product at a 6% inclusion rate (HYP). The iodine concentrations were 4.1 and 476 mg/kg dry matter in the CTR and HYP concentrate, respectively. After 26 days of adaptation in a barn, animals were placed in metabolism crates for three consecutive days (Period 1) with collection of rumen fluid (via esophagus), grass silage, feces, urine, and blood for iodine content. After 5 weeks in the barn, animals returned to the metabolism crates for a subsequent three consecutive day sampling and iodine analyzes (Period 2). Data were analyzed via ANOVA using a repeated measure mixed model procedure. Dry matter intake (P = 0.001) and live weight (P = 0.001) increased from Period 1 to Period 2. Lambs fed CTR had higher daily growth rate than those fed HYP (P = 0.001). Iodine intake and excretion in feces and urine increased from Period 1 to Period 2 (P < 0.001, P = 0.010, P = 0.007, respectively). Iodine excreted in feces was 37% and 67% for lambs in fed the CTR and HYP diets, respectively. None of the animals showed signs of iodine poisoning during ten the experiment. We found that most of the iodine excreted from lambs fed the HYP diet was in feces.

Til dokument

Sammendrag

The molecular diversity of the source substrate has been regarded as a significant controller of the proportion of plant material that is either mineralized or incorporated into soil organic matter (SOM). However, quantitative parameters to express substrate molecular diversity remain elusive. In this research, we fractionated leaves, twigs, bark, and root tissues of 13C-enriched eucalypt seedlings into hot water extractables (HWE), total solvent (acetone) extractables (TSE), a cellulosic fraction (CF), and the acid unhydrolyzable residue (AUR). We used 13C NMR spectroscopy to obtain a molecular diversity index (MDI) based on the relative abundance of carbohydrate, protein, lignin, lipid, and carbonyl functional groups within the biochemical fractions. Subsequently, we obtained artificial plant organs containing fixed proportions (25%) of their respective biochemical fractions to be incubated with soil material obtained from a Haplic Ferralsol for 200-days, under controlled temperature (25 ± 1 ◦C) and moisture adjusted to 70–80% of the soil water holding capacity. Our experimental design was a randomized complete block design, arranged according to a factorial scheme including 4 plant organs, 4 biochemical fractions, and 3 blocks as replicates. During the incubation, we assessed the evolution of CO2 from the microcosms after 1, 2, 3, 4, 7, 10, 13, 21, 28, 38, 45, 70, 80, 92, 112, 148, 178 and 200 days from the start of the incubation. After the incubation, soil subsamples were submitted to a density fractionation to separate the light fraction of SOM (LFOM) i.e., with density <1.8 g cm 3. The heavy fraction remaining was submitted to wetsieving yielding the sand-sized SOM (SSOM) and the mineral-associated SOM (MAOM), with particle-size greater and smaller than 53 μm, respectively. We found that HWE and AUR exhibited comparatively higher MDIs than the TSE and CF. During the incubation, HWE and CF were the primary sources of 13C-CO2 from all plant organs and after 92 days, the respiration of the TSE of bark and roots increased. Otherwise, the AUR contributed the least for the release of 13C-CO2. There were no significant relationships between the MDI and the amount of 13C transferred into the LFOM or SSOM. Otherwise, the transfer of 13C into the MAOM increased as a linear-quadratic function of MDI, which in turn was negatively correlated with the total 13C-CO2 loss. Overall, the MDI exerted a stronger control on the 13C-labeled MAOM than on 13C-CO2 emissions, highlighting the need to improve our ability to distinguish and quantify direct plant inputs from those of microbial origin entering soil C pools.

Til dokument

Sammendrag

Purpose of Review The demand for forest tree seedlings is increasing globally, and Sphagnum peat moss is widely used as a component of growing media for container plant production. However, peat extraction is environmentally unsustainable. The forest nursery sector needs to switch to more sustainable alternatives to peat. This review aims to identify potential substitutes for peat by reviewing the worldwide literature on alternative materials for growing media in forest nurseries. Recent Findings Most studies on alternative growing media focused on single plant species growing under local conditions, thereby limiting generalizations about the effectiveness of alternative materials for plant production. To our knowledge, no systematic reviews of scientific literature on the effectiveness of new, alternative-to-peat materials for enhancing plant growth and the associated growing media characteristics for the forest nursery sector are currently available. Summary Most of the analyzed case studies focused on angiosperms (73.1%), with the majority of studies coming from tropical seasonal forests/savannas (36.5%), followed by woodlands/shrublands (31.6%), and temperate forests (15.0%) biomes. Compost was the most studied material (19.5%), followed by bark, other organic materials, and manure (9.8, 9.7, and 8.0%, respectively). Green and municipal wastes were the principal sources of compost (> 60%), while agriculture and green wastes were the first sources of other materials (> 90%). Tested materials were dependent on the geographic region. Thus, manure was the most tested material in Africa and South America, tree bark in North America, and compost in Europe, Asia, and Oceania. Alternative materials effectively provided optimal physicochemical characteristics of growing media and enhanced seedling nursery growth when compared with peat-based growing media in more than 60% of the case studies. This review helps to identify research gaps and, most importantly, provides the basis for the future application of alternative growing media materials in forest nursery management worldwide.

Til dokument

Sammendrag

We compiled published peer-reviewed CO2, CH4, and N2O data on managed drained organic forest soils in boreal and temperate zones to revisit the current Tier 1 default emission factors (EFs) provided in the IPCC (2014) Wetlands Supplement: to see whether their uncertainty may be reduced; to evaluate possibilities for breaking the broad categories used for the IPCC EFs into more site-type-specific ones; and to inspect the potential relevance of a number of environmental variables for predicting the annual soil greenhouse gas (GHG) balances, on which the EFs are based. Despite a considerable number of publications applicable for compiling EFs being added, only modest changes were found compared to the Tier 1 default EFs. However, the more specific site type categories generated in this study showed narrower confidence intervals compared to the default categories. Overall, the highest CO2 EFs were found for temperate afforested agricultural lands and boreal forestry-drained sites with very low tree stand productivity. The highest CH4 EFs in turn prevailed in boreal nutrient-poor forests with very low tree stand productivity and temperate forests irrespective of nutrient status, while the EFs for afforested sites were low or showed a sink function. The highest N2O EFs were found for afforested agricultural lands and forestry-drained nutrient-rich sites. The occasional wide confidence intervals could be mainly explained by single or a few highly deviating estimates rather than the broadness of the categories applied. Our EFs for the novel categories were further supported by the statistical models connecting the annual soil GHG balances to site-specific soil nutrient status indicators, tree stand characteristics, and temperature-associated weather and climate variables. The results of this synthesis have important implications for EF revisions and national emission reporting, e.g. by the use of different categories for afforested sites and forestry-drained sites, and more specific site productivity categories based on timber production potential.

Til dokument

Sammendrag

Soil management is important for sustainable agriculture, playing a vital role in food production and maintaining ecological functions in the agroecosystem. Effective soil management depends on highly accurate soil property estimation. Machine learning (ML) is an effective tool for data mining, selection of key soil properties, modeling the non-linear relationship between different soil properties. Through coupling with spectral imaging, ML algorithms have been extensively used to estimate physical, chemical, and biological properties quickly and accurately for more effective soil management. Most of the soil properties are estimated by either near infrared (NIR), Vis-NIR, or mid-infrared (MIR) in combination with different ML algorithms. Spectroscopy is widely used in estimation of chemical properties of soil samples. Spectral imaging from both UAV and satellite platforms should be taken to improve the spatial resolution of different soil properties. Spectral image super-resolution should be taken to generate spectral images in high spatial, spectral, and temporal resolutions; more advanced algorithms, especially deep learning (DL) should be taken for soil properties’ estimation based on the generated ‘super’ images. Using hyperspectral modeling, soil water content, soil organic matter, total N, total K, total P, clay and sand were found to be successfully predicted. Generally, MIR produced better predictions than Vis-NIR, but Vis-NIR outperformed MIR for a number of properties. An advantage of Vis-NIR is instrument portability although a new range of MIR portable devices is becoming available. In-field predictions for water, total organic C, extractable phosphorus, and total N appear similar to laboratory methods, but there are issues regarding, for example, sample heterogeneity, moisture content, and surface roughness. More precise and detailed soil property estimation will facilitate future soil management.