Hilde Karine Wam

Seniorforsker

(+47) 920 10 746
hilde.wam@nibio.no

Sted
Ås - Bygg H8

Besøksadresse
Høgskoleveien 8, 1433 Ås

Til dokument

Sammendrag

Understanding how the nutritional properties of food resources drive foraging choices is important for the management and conservation of wildlife populations. For moose (Alces alces), recent experimental and observational studies during the winter have shown macronutrient balancing between available protein (AP) and highly metabolizable macronutrients (total non-structural carbohydrates [TNC] and lipids). Here, we combined the use of continuous-recording camera collars with plant nutrient analyses and forage availability measurements to obtain a detailed insight into the food and nutritional choices of three wild moose in Norway over a 5-day period in summer. We found that moose derived their macronutrient energy primarily from carbohydrates (74.2%), followed by protein (13.1%), and lipids (12.7%). Diets were dominated by deciduous tree browse (71%). Willows (Salix spp.) were selected for and constituted 51% of the average diet. Moose consumed 25 different food items during the study period of which 9 comprised 95% of the diet. Moose tightly regulated their intake of protein to highly metabolizable macronutrients (AP:TNC + lipids) to a ratio of 1:2.7 (0.37 ± 0.002SD). They did this by feeding on foods that most closely matched the target macronutrient ratio such as Salix spp., or by combining nutritionally imbalanced foods (complementary feeding) in a non-random manner that minimized deviations from the intake target. The observed patterns of macronutrient balancing aligned well with the findings of winter studies. Differential feeding on nutritionally balanced downy birch (Betula pubescens) leaves versus imbalanced twigs+leaves across moose individuals indicated that macronutrient balancing may occur on as fine a scale as foraging bites on a single plant species. Utilized forages generally met the suggested requirement thresholds for the minerals calcium, phosphorus, copper, molybdenum, and magnesium but tended to be low in sodium. Our findings offer new insights into the foraging behavior of a model species in ungulate nutritional ecology and contribute to informed decision-making in wildlife and forest management.

Til dokument

Sammendrag

Climate change causes far-reaching disruption in nature, where tolerance thresholds already have been exceeded for some plants and animals. In the short term, deer may respond to climate through individual physiological and behavioral responses. Over time, individual responses can aggregate to the population level and ultimately lead to evolutionary adaptations. We systematically reviewed the literature (published 2000–2022) to summarize the effect of temperature, rainfall, snow, combined measures (e.g., the North Atlantic Oscillation), and extreme events, on deer species inhabiting boreal and temperate forests in terms of their physiology, spatial use, and population dynamics. We targeted deer species that inhabit relevant biomes in North America, Europe, and Asia: moose, roe deer, wapiti, red deer, sika deer, fallow deer, white-tailed deer, mule deer, caribou, and reindeer. Our review (218 papers) shows that many deer populations will likely benefit in part from warmer winters, but hotter and drier summers may exceed their physiological tolerances. We found support for deer expressing both morphological, physiological, and behavioral plasticity in response to climate variability. For example, some deer species can limit the effects of harsh weather conditions by modifying habitat use and daily activity patterns, while the physiological responses of female deer can lead to long-lasting effects on population dynamics. We identified 20 patterns, among which some illustrate antagonistic pathways, suggesting that detrimental effects will cancel out some of the benefits of climate change. Our findings highlight the influence of local variables (e.g., population density and predation) on how deer will respond to climatic conditions. We identified several knowledge gaps, such as studies regarding the potential impact on these animals of extreme weather events, snow type, and wetter autumns. The patterns we have identified in this literature review should help managers understand how populations of deer may be affected by regionally projected futures regarding temperature, rainfall, and snow.

Til dokument

Sammendrag

Animals representing a wide range of taxonomic groups are known to select specific food combinations to achieve a nutritionally balanced diet. The nutrient balancing hypothesis suggests that, when given the opportunity, animals select foods to achieve a particular target nutrient balance, and that balancing occurs between meals and between days. For wild ruminants who inhabit landscapes dominated by human land use, nutritionally imbalanced diets can result from ingesting agricultural crops rich in starch and sugar (nonstructural carbohydrates [NCs]), which can be provided to them by people as supplementary feeds. Here, we test the nutrient balancing hypothesis by assessing potential effects that the ingestion of such crops by Alces alces (moose) may have on forage intake. We predicted that moose compensate for an imbalanced intake of excess NC by selecting tree forage with macro-nutritional content better suited for their rumen microbiome during wintertime. We applied DNA metabarcoding to identify plants in fecal and rumen content from the same moose during winter in Sweden. We found that the concentration of NC-rich crops in feces predicted the presence of Picea abies (Norway spruce) in rumen samples. The finding is consistent with the prediction that moose use tree forage as a nutritionally complementary resource to balance their intake of NC-rich foods, and that they ingested P. abies in particular (normally a forage rarely eaten by moose) because it was the most readily available tree. Our finding sheds new light on the foraging behavior of a model species in herbivore ecology, and on how habitat alterations by humans may change the behavior of wildlife.