Abirami Ramu Ganesan

Forsker

(+47) 922 41 654
abirami.ganesan@nibio.no

Sted
Bodø

Besøksadresse
Torggården, Kudalsveien 6, NO-8027 Bodø

Til dokument

Sammendrag

Ochnaflavone is a naturally occurring biflavonoid mainly isolated from Ochna integerrima, manifests health benefits encompassing antidiabetic, anticancer, anti-cardiovascular, and anti-inflammatory activities. However, most bioactivity research has focused on in vitro experiments, rather than in vivo disease models, toxicological assessments, and human clinical trials. Moreover, a comprehensive review of the pharmacological aspects of ochnaflavone is conspicuously lacking. Thus, this review provides a concise and comprehensive summary of existing knowledge on the chemical structure, plant origin, physical properties, biotransformations, and multifaceted biological activities of ochnaflavone along with an in-depth exploration of the complex molecular mechanisms behind these activities, including signaling pathways and gene expression regulation, with the aim of promoting future theoretical needs for ochnaflavone in clinical trials and providing comprehensive insights into the research and application of this valuable natural compound.

Sammendrag

Horticultural food waste can be recovered to produce high-value products. Appropriate green solvents and a selection of cleaner production could unlock waste into useful resources for human health. This will significantly reduce greenhouse gas emissions, and CO2 production, and create economic opportunities to contribute to food security.

Til dokument Til datasett

Sammendrag

Global measures to bring net-zero-carbon and zero-waste emissions are expanding at a rapid pace. Currently, only 16% of the plastic waste from the food industrial sector is reprocessed and recycled, which is way lesser than its accumulation. Several countries have imposed a ban on single-use plastic derived from food and/or beverage industries. All these constraints and challenges have encouraged researchers to find a sustainable alternative to petroleum-based food packaging. The environmentally friendly substitute can be the bio-based polymer material derived from agri-food and marine wastes that connect the waste loop in the current economic model. This waste has the most valuable biopolymer mainly present in the cell wall matrix of plants, animals, bacteria, fungi, and algae. All these biopolymers are either accumulated in a landfill or not entirely harvested their high-value compounds as a potential feedstock. Nevertheless, bio-based polymers have better thermos-mechanical properties that can resist various conditions. They comprise superior functional properties when these biopolymers are coupled with other organic compounds such as composite films or multilayer packaging films which enhance the shelf-life of the food. Overall, biopolymers readily react with the soil microbes under specified environmental conditions that can significantly enhance the biodegradability of packaging material. This unique quality is envisaged to solve the existing problems and detrimental effects of synthetic polymer usage in the food industry. In this background, in this chapter, the origin of biopolymers and their potential functionality, mechanical property, and degradability as food packaging materials are discussed. Their current challenges and possible future prospects are also meticulously highlighted.

Til dokument

Sammendrag

Black soldier fly larvae (BSFL) Hermetia illucens is fastest growing and most promising insect species especially recommended to bring high-fat content as 5th generation bioenergy. The fat content can be fully optimized during the life-cycle of the BSFL through various organic dietary supplements and environmental conditions. Enriched fat can be obtained during the larval stages of the BSF. The presence of high saturated and unsaturated fatty acids in their body helps to produce 70 % of extractable oil which can be converted into biodiesel through transesterification. The first-generation biodiesel process mainly depends on catalytic transesterification, however, BSFL had 94 % of biodiesel production through non-catalytic transesterification. This increases the sustainability of producing biodiesel with less energy input in the process line. Other carbon emitting factors involved in the rearing of BSFL are less than the other biodiesel feedstocks including microalgae, cooking oil, and non-edible oil. Therefore, this review is focused on evaluating the optimum dietary source to produce fatty acid rich larvae and larval growth to accumulate C16–18 fatty acids in larger amounts from agro food waste. The process of optimization and biorefining of lipids using novel techniques have been discussed herein. The sustainability impact was evaluated from the cultivation to biodiesel conversion with greenhouse gas emissions scores in the entire life-cycle of process flow. The state-of-the-art in connecting circular bioeconomy loop in the search for bioenergy was meticulously covered.

Til dokument

Sammendrag

There is a stable growth in aquaculture production to avoid seafood scarcity. The usage of eco-friendly feed additives is not only associated with aquatic animal health but also reduces the risk of deleterious effects to the environment and consumers. Aquaculture researchers are seeking dietary solutions to improve the growth performance and yield of target organisms. A wide range of naturally derived compounds such as probiotics, prebiotics, synbiotics, complex carbohydrates, nutritional factors, herbs, hormones, vitamins, and cytokines was utilized as immunostimulants in aquaculture. The use of polysaccharides derived from natural resources, such as alginate, agar, laminarin, carrageenan, fucoidan, chitin, and chitosan, as supplementary feed in aquaculture species has been reported. Polysaccharides are prebiotic substances which are enhancing the immunity, disease resistance and growth of aquatic animals. Further, chitin (CT), chitosan (CTS) and chitooligosaccharides (COS) were recognized for their biodegradable properties and unique biological functions. The dietary effects of CT, CTS and COS at different inclusion levels on growth performance, immune response and gut microbiota in aquaculture species has been reviewed. The safety regulations, challenges and future outlooks of CT, CTS and COS in aquatic animals have been discussed in this review.

Til dokument

Sammendrag

Emerging pollutants, corrosive chemicals and dyes released from the industries, harshly contaminates the landfills, environment and water reservoirs. Mass mortalities of aquatic animals in water bodies and species depletion is linked with improper release of wastewater. Pollutants released in water bodies are a threatening alarm to the human society and environment. To remove the pollutants from municipal wastewater, several techniques including adsorption, chelation, precipitation and ion exchange were employed. However, chitosan based hybrid materials (nanocomposite, hydrogel, membrane, film, sponge, nanoparticle, microsphere and flake) could serve as novel alternate materials to replace the chemical based adsorbents. The advantages of using chitosan based hybrid materials in wastewater treatment was summarized herein. Furthermore, this review aims to highlight the role of chitosan based hybrid materials for removing various pollutants and dyes from municipal wastewater.

Til dokument

Sammendrag

Craft breweries are continuously searching for beers made with locally produced raw materials and unique flavor profiles to respond to consumer requests. We explored the behavior of three commercial strains of Saccharomyces cerevisiae in the fermentation of ale beer with a high prevalence of rye malt in comparison to pure barley malt. In total, 34 volatile organic compounds were identified, with esters and alcohols being the quantitatively most abundant classes. The yeast strain appeared to impart more differences in the beer’s volatile profile compared to malt. In particular, S. cerevisiae var. diastaticus Y2 strain was associated with a higher production of esters, while strain S. cerevisiae Y3 was correlated to the higher amounts of terpenes together with the lowest relative abundance of volatile acids. Our findings encourage further investigation of the fermentation performance of several yeast strains to produce beers with unique flavors.

Til dokument Til datasett

Sammendrag

This study aimed to evaluate the rheological properties of doughs with 50% brewers’ spent grain (BSG) derived from a rye-based (RBSG) and barley-based (BBSG) beer added, and the textural profile of the related baked products. Simple model systems using BSG flour mixed with water were studied. Two bakery products, focaccia and cookies, were made as food systems using BSG in a 1:1 ratio with wheat flour (WF). Their rheological properties and texture after baking were characterized. BSG-added dough exhibited viscoelastic properties with a solid gel-like behavior. The addition of BSG increased G′ > G″ and decreased the dough flexibility. BSG addition in baked RBSG focaccia increased the hardness, gumminess, and chewiness by 10%, 9%, and 12%, respectively. BBSG cookies had a 20% increase in fracturability. A positive correlation was found between the rheological metrics of the dough and the textural parameters of BBSG-added cookies. PCA analysis revealed that complex viscosity, G′, G″, and cohesiveness separated BBSG focaccia from RBSG focaccia and the control. Therefore, the rheological properties of BSG dough will have industrial relevance for 3D-printed customized food products with fiber. Adding RBSG and BBSG to selected foods will increase the up-cycling potential by combining techno-functional properties.

Til dokument

Sammendrag

The accumulation of petroleum-based plastics causes economic and environmental concerns which necessitate a comprehensive search for biodegradable packaging materials. Brewer's spent grain (BSG) is an interesting by-product, which is one of the main wastes of beer production in Europe. BSG could offer added value in the food packaging sector owing to the significant amount generated annually, high biomaterials content, and low market value. Herein, the significance of various biorefinery techniques (physical, chemical, and biological) for the extraction of high-value products (such as protein, cellulose, hemicellulose, lignin, and phenolic compounds) from the BSG are comprehensively examined. BSG-derived biodegradable films and coatings for food packaging are critically evaluated. Finally, techno-economics, environmental impacts, energy consumption, regulations, challenges, and prospects are also critically evaluated. The best biorefinery system necessitates a balance between extraction efficiency, energy consumption, environmental impact, tangible upscaling, and operating cost. The mechanical dewatering of BSG before extraction, including the physical pretreatments, utilization of green solvents, the integration of the solvent recovery system, and the combination of two or more biorefinery techniques could reduce the energy requirements, greenhouse gas emissions, and increase the recovery yield of biomaterials. Cellulose, lignin, xylitol, and arabinoxylan are recommended as the most promising components from BSG for food packaging applications.

Til dokument

Sammendrag

The marine food-processing industries were producing large quantities of shell wastes as a discard. Currently, this waste material was underutilized and leads to the landfill as a significant environmental issue. The outer shells or exoskeletons of mollusks serve as the best source of chitin. Three different allomorphs of chitin (γ, β, and γ) were extracted from different species of crustaceans, mollusks, and fungi. β-Allomorphs predominantly exist in the shells of mollusks. β-Chitin and its deacetylated product chitosan has been utilized for its special characteristic features, including biocompatibility, environmental friendly, and nontoxic properties. The extraction of β-chitin and chitosan from the mollusk shell waste were evaluated in this work. Hence, this review aims to explore edible mollusk shell waste sources and its suitable extraction techniques, characterizations, and functional properties of mollusk-based β-chitin and chitosan. Further, the genetic pathway of synthesizing mollusk chitin was discussed. The entire life cycle assessment with techno-economic aspects were extrapolated to study the bottlenecks and tangible solution for the industrial upscaling of obtaining β-chitin and chitosan from the edible mollusk shell waste have been reviewed herein.

Til dokument

Sammendrag

Chitin is one of the most diverse and naturally occurring biopolymers, and it is mainly present in crustaceans, insects, and fungi. Chitosan is derived from chitin by deacetylation process. It is important to note that the conventional chemical method of extracting chitin includes disadvantages and it poses various environmental issues. Recently, the green extraction techniques have perceived substantial development in the field of polymer chemistry. A variety of methods have been successfully developed using green extraction techniques for extracting chitin and chitosan from various resources. It includes the use of ionic liquids (ILs), deep eutectic solvents (DES), microbial fermentation, enzyme-assisted extraction (EAE), microwave-assisted extraction (MAE), ultrasonic-assisted extraction (UAE), subcritical water extraction (SWE), and electrochemical extraction (ECE). In this review, the extraction of chitin and chitosan using greener approaches were summarized. In addition, challenges, opportunities and future perspectives of green extraction methods have also been narrated.

Til dokument

Sammendrag

Phycoerythrin (PE) is a photosensitive red pigment from phycobiliprotein family predominantly present in the red algae. The concentration of PE depends on photon flux density (PFD) and the quality of light absorbed by the algae tissue. This necessitates robust techniques to extract PE from the embedded cell-wall matrix of the algal frond. Similarly, PE is sensitive to various factors which influence its stability and purity of PE. The PE is extracted from Red algae through different extraction techniques. This review explores an integrative approach of fractionating PE for the scaling-up process and commercialization. The mechanism for stabilizing PE pigment in food was critically evaluated for further retaining this pigment within the food system. The challenges and possibilities of employing efficient extraction for industrial adoption are meticulously estimated. The techniques involved in the sustainable way of extracting PE pigments improved at a laboratory scale in the past decade. Although, the complexity of industrial-scale biorefining was found to be a bottleneck. The extraction of PE using benign chemicals would be safe for food applications to promote health benefits. The precise selection of encapsulation technique with enhanced sensitivity and selectivity of the membrane would bring better stability of PE in the food matrix.

Til dokument

Sammendrag

Aquaculture industry is one of the major food-producing sectors in the world that provide nutritional food security for mankind. Fish and crustacean farmers are facing various challenges in treating the rapid spread of infectious diseases in recent times. Numerous strategies, including antibiotics, disinfectants, and other antimicrobial agents, have been applied to protect the cultivable aquatic animals from infectious diseases. These applications lead to the development of antimicrobial resistance, toxicity, and the accumulation of antibiotic residues in cells and organelles of the cultivable edible organisms and the environment. The use of naturally derived compounds, polysaccharides, and functional metabolites has gained immense attention among aquaculturists. Mushrooms and their nutraceutical components have been widely used in various sectors, including food, pharmaceutical, poultry, and aquaculture industries, for their non-toxic and eco-friendly properties. To date, there are several reports available on edible and medicinal mushrooms as a dietary ingredient for fish and decapod crustacean culture. The mushroom products such as mycelia, stalk, dry powder, polysaccharides, and extracts have been utilized in aquaculture as growth promoters and immunostimulants, improving the digestive enzyme activity, antimicrobials, and improving the health status of cultivable aquatic animals. This present review elucidates the effectiveness of mushrooms and mushroom-derived compounds as prebiotics in aquaculture. The challenges and future perspectives of mushroom-derived bioactive molecules have been discussed in this review.

Til dokument

Sammendrag

Aquaculture industry is one of the world’s fastest and largest growing food producing sector. Most importantly, the usage of fish meal in aquaculture has been replaced with alternate protein sources due to their production cost, demand of raw materials and various environmental issues. The insect black soldier fly (Hermetia illucens) larval (BSFL) meal is being recognized as a feed ingredient in aquafeeds for their protein rich content similar to fish meal (FM). BSFL meal has been utilized as a fish meal or soy meal substitution in aquaculture to improve the nutrition. The culture of H. illucens larvae can be achieved using various biodegradable wastes and converted into a valuable biomass. In addition, the proximate analysis of H. illucens has been analyzed for its multifaceted role in poultry, cattle feed preparation and human consumption. The effectiveness of BSFL diet was analyzed for final body weight (FBW), specific growth rate (SGR), feed conversion ratio (FCR), feed intake (FI), feed efficiency (FE) and survival (SUR) of different fish and shrimp used as an experimental models with FM as the control diet. However, there is no comprehensive review available on the BSFL as an alternate protein source in aquaculture till date. Hence, the present review aimed to evaluate the feasible role of BSFL in feed, its sustainable production and challenges of BSFL meal in aquaculture sector along with their merits and demerits.