Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2023
Sammendrag
Modifying natural polymers with silicones gives new possibilities for packaging products and waste management. In this study, the innovative papers produced were altered following the reaction of polysaccharides and organosilicon compounds. The susceptibility of the studied material to biodegradation caused by a brown-rot fungus was assessed. Strength properties by tensile strength and dynamic mechanical analysis and hydrophobic properties by water uptake test and water contact angle analysis were evaluated. Moreover, elemental analysis by ICP method was controlled. The durability against fungi and the hydrophobic properties were increased by the modification. The fungal decay resistance of the silanized paper was reduced by water storage, which allows for managing paper waste. Cellulose-based paper treated with starch-modified methyltrimethoxysilane showed potential as a packaging material due to its reduced water uptake. Possible application areas could be corrugated boxes, cellulose thermoformed products for electronics, and food packaging. However, the water-repellent effect is limited to short-term exposure in humid conditions.
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Mathias Amundsen Kjersti Aaby Laura Jaakola Gesine Schmidt Inger Martinussen Anne Linn HykkerudSammendrag
Lingonberries (Vaccinium vitis-idaea L.) have received much positive attention due to their exotic taste and high phenolic content. These small red fruits grow across Norway, a country with large variations in abiotic and biotic growth conditions. The large variations in abiotic and biotic growth conditions have potential to influence quality and availability of lingonberries. A three-year study (2019-2021) with 64 field plots across Norway have therefore been set up, with the aim of studying the effect of climate and growth conditions on lingonberries. Here, anthocyanin content in berries from the first growth season is presented. Eight locations across Norway (58 to 69°N) with supposed high production potential of lingonberries were selected. Within each location, eight stands (250 m2) with different biotic conditions were chosen. Berries from each sector were lyophilised and extracted with 70% methanol. Phenolic compounds were analysed by HPLC-DAD-MSn, with quantification of anthocyanin at 520 nm and MS used for identification. The three major anthocyanins in Norwegian lingonberries were cyanidin-3-galactoside (69-90%), -arabinoside (6-23%) and -glucoside (2-10%). Additionally, small quantities of three other cyanidin glycosides were preliminarily identified. The total content of anthocyanins in lingonberries ranged from approximately 320 to 790 mg 100 g‑1 dw. There appears to be a variation in anthocyanin concentration linked to latitude. However, as the variation was as large within the stands of each location as they were between the locations, different growth factors would also play key parts in synthesis of anthocyanins in lingonberries. Results from analysis of berries collected in 2020 and 2021 are necessary to have the basis to draw a conclusion on how biotic and abiotic factors influence anthocyanin content of lingonberries.
Forfattere
Thiago Inagaki Angela R. Possinger Steffen A. Schweizer Carsten W. Mueller Carmen Hoeschen Michael J. Zachman Lena F. Kourkoutis Ingrid Kögel-Knabner Johannes LehmannSammendrag
Det er ikke registrert sammendrag
Forfattere
Inger Martinussen Mathias Amundsen Aksel Granhus Antje Gonera Marius Hauglin Anne Linn Hykkerud Laura Jaakola Mikko Kurttila Jari Miina Rainer Peltola Gesine Schmidt Josefine Skaret Baoru Yang Kjersti AabySammendrag
Almost 95% of the area in Norway is wilderness and 38% of the land area is covered by woods. These areas are abundant in valuable renewable resources, including wild berries. In our neighbouring countries, Sweden and Finland, wild berries are already a big industry. At the same time, on the market the Norwegian wild berries are almost non-existent and berries are left unexploited. Lingonberry (Vaccinium vitis-idaea) is one of the most abundant and economically important wild berries in the Nordic countries. Nevertheless, lingonberry has a large untapped potential due to its unique health effects and potential for increased value creation. It is estimated that 111,500 t of lingonberry are produced in the Norwegian woods. Norway is a long and diverse country with a range of climatic conditions. Adaptations to different conditions can give differences in both yield and quality of wild berries. Yields vary enormously from year to year and among different locations. A steady supply, predictable volumes and high quality are vital for successful commercialization of wild berries. To increase the utilization of berries, there is a need for increased knowledge regarding availability and quality variation of the berries. In addition, the Norwegian market suffers from high labour costs and cannot compete in product price. Innovative solutions and new knowledge on quality aspects can open possibilities for value creation. Toward achieving this goal, we have created a project called “WildBerries”, the main objective of which is to produce research-based knowledge that will create the basis for increased commercial utilization of Norwegian wild berries.
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Dalphy Ondine Camira Harteveld Paul Goedhart Ilse Houwers Jürgen Köhl Peter Frans de Jong Marcel WennekerSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Finn-Arne HaugenSammendrag
Det er ikke registrert sammendrag
Redaktører
Einar StrandSammendrag
Det er ikke registrert sammendrag