Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2023

Til dokument

Sammendrag

Understanding the chemical composition of our planet's crust was one of the biggest questions of the 20th century. More than 100 years later, we are still far from understanding the global patterns in the bioavailability and spatial coupling of elements in topsoils worldwide, despite their importance for the productivity and functioning of terrestrial ecosystems. Here, we measured the bioavailability and coupling of thirteen macro- and micronutrients and phytotoxic elements in topsoils (3–8 cm) from a range of terrestrial ecosystems across all continents (∼10,000 observations) and in response to global change manipulations (∼5,000 observations). For this, we incubated between 1 and 4 pairs of anionic and cationic exchange membranes per site for a mean period of 53 days. The most bioavailable elements (Ca, Mg, and K) were also amongst the most abundant in the crust. Patterns of bioavailability were biome-dependent and controlled by soil properties such as pH, organic matter content and texture, plant cover, and climate. However, global change simulations resulted in important alterations in the bioavailability of elements. Elements were highly coupled, and coupling was predictable by the atomic properties of elements, particularly mass, mass to charge ratio, and second ionization energy. Deviations from the predictable coupling-atomic mass relationship were attributed to global change and agriculture. Our work illustrates the tight links between the bioavailability and coupling of topsoil elements and environmental context, human activities, and atomic properties of elements, thus deeply enhancing our integrated understanding of the biogeochemical connections that underlie the productivity and functioning of terrestrial ecosystems in a changing world.

Sammendrag

Appropriate weed control measures during the renewal phase of temporary grasslands are critical to ensure high yields during the whole grassland lifecycle. The aim of this study was to determine which integrated grassland renewal strategy can most effectively control annual weeds in the sowing year and delay perennial weed re-establishment. Four split-plot trials were established at three sites dominated by Rumex spp. along a south-north gradient in Norway. The annual and perennial weed abundance was recorded during the sowing year and two or three production years. Main plots tested seven renewal strategies: 1. Spring plowing, 2. Spring plowing+companion crop (CC), 3. Summer cut+plowing, 4. Summer glyphosate+plowing, 5. Summer glyphosate+harrowing, 6. Late spring glyphosate+plowing, 7. Fall glyphosate+spring plowing+CC. Strategies 1–4 were tested in all four trials, strategy 5 in three trials, strategy 6 in two trials and strategy 7 in one trial. Plowing was performed at 20–25 cm depth, rotary harrowing at 15 cm depth, and glyphosate was applied at 2160 g a.i. ha-1. CC was spring barley (Hordeum vulgare). Subplots tested selective herbicide spraying (yes/no) in the sowing year. Results showed that effects of renewal strategies were often site-specific and differed between the sowing year and production years. Spring renewal resulted in higher perennial weed abundance than summer renewal in two out of four trials (by 3 and 12 percentage points, over all production years), and glyphosate followed by harrowing drastically increased Rumex spp. in one out of three trials (by 18 percentage points over all production years). CCs only significantly reduced perennial weed abundance in one trial (by 8 percentage points over all production years). In comparison, the selective herbicides had a strong effect on annual and perennial weeds in the sowing year in all trials. Selective herbicides reduced the weed cover from 32% to 7% cover, and averaged over the production years and sites, the perennial weed biomass fraction was 6 percentage points lower where herbicides had been applied. We conclude that while the tested renewal strategies provided variable and site-specific perennial weed control, selective herbicides were effective at controlling Rumex spp. and other perennial dicot weeds in the first two production years.

Til dokument

Sammendrag

Forests provide a range of vital services to society and are critical habitats for biodiversity, holding inherent multifunctionality. While traditionally viewed as a byproduct of production-focused forestry, today's forest ecosystem services and biodiversity (FESB) play an essential role in several sectoral policies’ needs. Achieving policy objectives requires careful management considering the interplay of services, influenced by regional aspects and climate. Here, we examined the multifunctionality gap caused by these factors through simulation of forest management and multi-objective optimization methods across different regions - Finland, Norway, Sweden and Germany (Bavaria). To accomplish this, we tested diverse management regimes (productivity-oriented silviculture, several continuous cover forestry regimes and set asides), two climate scenarios (current and RCP 4.5) and three policy strategies (National Forest, Biodiversity and Bioeconomy Strategies). For each combination we calculated a multifunctionality metric at the landscape scale based on 5 FESB classes (biodiversity conservation, bioenergy, climate regulation, wood, water and recreation). In Germany and Norway, maximum multifunctionality was achieved by increasing the proportion of set-asides and proportionally decreasing the rest of management regimes. In Finland, maximum MF would instead require that policies address greater diversity in management, while in Sweden, the pattern was slightly different but similar to Finland. Regarding the climate scenarios, we observed that only for Sweden the difference in the provision of FESB was significant. Finally, the highest overall potential multifunctionality was observed for Sweden (National Forest scenario, with a value of 0.94 for the normalized multifunctionality metric), followed by Germany (National Forest scenario, 0.83), Finland (Bioeconomy scenario, 0.81) and Norway (National Forest scenario, 0.71). The results highlight the challenges of maximizing multifunctionality and underscore the significant influence of country-specific policies and climate change on forest management. To achieve the highest multifunctionality, strategies must be tailored to specific national landscapes, acknowledging both synergistic and conflicting FESB.

Sammendrag

Parametric modeling of downwelling longwave irradiance under all-sky conditions (LW↓) typically involves “correcting” a clear- (or non-overcast) sky model estimate using solar-irradiance-based proxies of cloud cover in lieu of actual cloud cover given uncertainties and measurement challenges of the latter. While such approaches are deemed sound, their application in time and space is inherently limited. We report on a correction model free of solar irradiance-derived cloud proxies that is applicable at the true daily (24 hr) and global scales. The new “cloud-free” correction model demonstrates superior performance in a range of environments relative to existing cloud-free modeling approaches and to corrections based on solar-derived cloudiness proxies. Literature-based performance benchmarking indicates a performance that is often comparable to—and in some cases superior to—performances yielded by conventional parametric modeling approaches employing locally or regionally calibrated parameters, as well as to performances of satellite-based algorithms.

Til dokument

Sammendrag

Event MON 87701 is a genetically modified soybean developed via Agrobacterium tumefaciens transformation. MON 87701 plants contain the transgene cry1Ac which encodes the protein Cry1Ac. The protein Cry1Ac provides resistance against specific lepidopteran pests. The scientific documentation provided in the renewal application (EFSA-GMO-RX-021) for soybean MON 87701 is adequate for risk assessment, and in accordance with EFSA guidance on risk assessment of genetically modified plants for use in food or feed. The VKM GMO panel does not consider the introduced modifications in soybean MON 87701 to imply potential specific health or environmental risks in Norway, compared to EU-countries. The EFSA opinion is adequate also for Norwegian considerations. Therefore, a full risk assessment of event MON 87701 was not performed by the VKM GMO Panel.

Til dokument

Sammendrag

Didemnum vexillum is colonial sea squirt, a marine species which originates from the northwest Pacific; it was first recorded in Norway in November 2020. Didemnum vexillum is an alien species, meaning that it is a species that has been transferred from its original region to other regions of the world through human activity, and it had not previously been recorded in Norwegian waters. The species is regarded as having great invasive potential and having strong negative ecological effects on biodiversity. It is also considered to pose a risk to marine industries such as shipping and aquaculture, with possible major negative economic impacts.

Til dokument

Sammendrag

VKM has evaluated the risk to biodiversity from allowing private import and keeping of the Northern Cardinal as a caged bird in Norway, for birds acquired through the bird trade. VKM has reviewed the invasion ecology of non-native birds in general and of the Northern Cardinal specifically. The assessment includes evaluation of various mechanisms that invasive birds generally have a negative impact through, and includes competition, hybridization, spread of pathogens and interactions with other alien species in Norway. VKM has also evaluated two different scenarios establishment and how climate change can influence both the negative impact and the likelihood of establishment. Overall, VKM finds that there is low risk in regards negative effects on biodiversity in Norway in regard to import and keeping of the Northern Cardinal.

Til dokument

Sammendrag

Water-sorption studies and certain organic chemistry reactions require water removal from cellulosic samples. This is hindered by the strong interaction of cellulosic materials with water, and it remains uncertain if a completely anhydrous state can be reached under common drying conditions. Here, different drying conditions were applied to wood and cellulose, and the residual moisture contents were quantified either gravimetrically or by coulometric Karl-Fischer titration. Vacuum-drying at 103 °C and ≤ 1 mbar for at least 360 min decreased the moisture content to ≤ 0.04%. However, in automated sorption balances, drying at atmospheric pressure under dry air or nitrogen flow left some samples with more than 1% moisture content. The residual moisture content obtained under dry gas flow was temperature dependent. Increasing the temperature up to 55 °C decreased the residual moisture content and cooling resulted in a moisture re-uptake, presumably due to small quantities of water vapor in the surrounding atmosphere. These effects must be considered in fundamental studies on water interactions of cellulosic materials.