Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2021

Sammendrag

In Northern Europe, future changes in land-use and weather patterns are expected to result in increased precipitation and temperature this may cause an increase in plant disease and insect pests. In addition, predicted population increase will change the production demands and in turn alter agricultural practices such as crop types and with that the use pattern of pesticides. Considering these variabilities and magnitudes of pesticide exposure to the aquatic environment still needs to be accounted for better in current probabilistic risk assessment. In order to improve ecological risk assessment, this study explores an alternative approach to probabilistic risk assessment using a Bayesian Network, as these can serve as meta-models that link selected input and output variables from other models and information sources. The developed model integrates variability in both exposure and effects in the calculation of risk estimate. We focus on environmental risk of pesticides in two Norwegian case study region representatives of northern Europe. Using pesticide fate and transport models (e.g. WISPE), environmental factors such as soil and site parameters together with chemical properties and climate scenarios (current and predicted) are linked to the exposure of a pesticide in the selected study area. In the long term, the use of tools based on Bayesian Network models will allow for a more refined assessment and targeted management of ecological risks by industry and policy makers.

Sammendrag

The aquatic environment is constantly exposed to various chemicals caused by anthropogenic activities such as agricultural practices using plant protection products. Traditional Environmental Risk Assessment is based on calculated risk estimations usually representing a ratio of exposure to effects, in combination with assessment factors to account for uncertainty. In this study, we explore a more informative approach through probabilistic risk assessment, where probability distributions for exposure and effects are expressed and enable accounting for variability and uncertainty better. We focus on the risk assessment of various pesticides in a representative study area in the south east of Norway. Exposure data in this research was provided by the Norwegian Agricultural Environmental Monitoring Programme (JOVA)/ or predicted exposure concentration from a pesticide exposure model and effect data was derived from the NIVA Risk Assessment database (RAdb, www.niva.no/radb). A Bayesian network model is used as an alternative probabilistic approach to assess the risks of chemical. Bayesian Networks can serve as meta-models that link selected input and output variables from several separate project outputs and offer a transparent way of evaluating the required characterization of uncertainty for ERA. They can predict the probability of several risk levels, while facilitating the communication of estimates and uncertainties.

Til dokument

Sammendrag

Propionate and propionyl-CoA accumulation have been associated with the development of mitochondrial dysfunction. In this study, we show that propionate induces intestinal damage in zebrafish when fed a high-fat diet (HFD). The intestinal damage was associated with oxidative stress owing to compromised superoxide dismutase 2 (Sod2) activity. Global lysine propionylation analysis of the intestinal samples showed that Sod2 was propionylated at lysine 132 (K132), and further biochemical assays demonstrated that K132 propionylation suppressed Sod2 activity. In addition, sirtuin 3 (Sirt3) played an important role in regulating Sod2 activity via modulating de-propionylation. Finally, we revealed that intestinal oxidative stress resulting from Sod2 propionylation contributed to compositional change of gut microbiota. Collectively, our results in this study show that there is a link between Sod2 propionylation and oxidative stress in zebrafish intestines and highlight the potential mechanism of intestinal problems associated with high propionate levels.