Sammendrag

European fruit research institute network (EUFRIN) has started coordinated apple rootstock trials across the Europe in 2017. Until now, nineteen research institutions from 14 countries established 6 apple rootstock trials where 33 apple rootstocks of different vigour are in tests. Introduction of new apple orchard designs, multileader canopies usually require more vigorous rootstocks. Investigations of semi-dwarfing apple rootstocks ‘PFR1’ and ‘PFR3’ (New Zealand), ‘G.935’ and ‘G.202’ (US), ‘EM_01’ (UK) and ‘G.11’ as control were performed with apple ‘Galaval’ in Spain, France, and Lithuania during 2017-2023. On the average of five trial sites, the most vigorous trees were on ‘EM_01’, ‘PFR1’ and ‘PFR3’, exceeding vigour of trees on ‘G.11’ by 61 – 84%. Apple trees on rootstocks ‘PFR1’, ‘PFR3’ and ‘G.935’ produced higher cumulative yields, ‘G.202’ similar and ‘EM_01’ significantly lower yield comparing with ‘G.11’. Fertility index of ‘G.935’ equalled fertility of dwarfing ‘G.11’. Fertility index of ‘PFR3’ was similar to ‘G.202’, and the lowest was recorded for ‘EM_01’. Average fruit size did not depend on rootstocks. Rootstock – site interaction was not significant for tree vigour, fruit size, however significant interactions were recorded for cumulative yield and fertility index.

Sammendrag

European fruit research institute network (EUFRIN) has started coordinated apple and pear rootstock trials across the Europe in 2017. First pear rootstock trial was established in 2019 where quince rootstocks from NIAB (UK) breeding program ‘QR196-9’ and ‘QR530-11’ were compared with rootstocks ‘Adams’ and ‘Sydo’. Investigations were conducted with pear cultivar ‘Conference’ in Spain, Romania, Poland and Norway during 2019-2023. In all sites the most vigorous pear trees grew on ‘QR196-9’ rootstock. On the average of four trial sites, the weakest growth was recorded on ‘QR530-11’, except the Spanish site. Pear trees on rootstock ‘Adams’ produced the highest cumulative yields. Cumulative yields on other rootstocks were significantly lower by 16-23% without significant differences between them. However, site geographical position, climate and soil properties had a significant effect on rootstock performance. Similar to trees on ‘Adams’ high pear yield in Spain was harvested from trees on ‘QR196-9’; on ‘QR530-11’ rootstock in Poland, but ‘Sydo’ and ‘QR530-11’ rootstocks gave the highest yield in Romania. On the average of all sites, the least cumulative fertility index was recorded on ‘QR196-9’. Significant rootstock site interactions were revealed: rootstock ‘Adams’ had the highest cumulative fertility index in Spain and Norway, while rootstock ‘QR530-11’ in Poland and Romania.

Til dokument

Sammendrag

The fungus Neonectria ditissima causes fruit tree canker, a serious desease on apple and pear. In the past years the disease has become a threat for Swedish and Northern European apple production since devastating outbreaks destroy large numbers of trees. To date, no complete genetic resistance to N. ditissima is known in apple but genotypes (scion cultivars and rootstocks) differ greatly in their level of partial resistance. Furthermore, susceptibility of a scion cultivar may be influenced by the rootstock it is grafted to. Thus we aimed to improve our understanding of genetically determined differences in resistance among rootstocks and clarify cultivar/rootstock interactions with regards to canker resistance. For that, two experiments where conducted where differences in resistance were evaluated in 23 rootstocks (including two ‘M.9’ clones) and in the four most common scion cultivars in Swedish orchard grafted to four rootstocks differing in vigour (16 rootstock/scion combinations). The trees were inoculated in a greenhouse in artificially created wounds and the symptoms were assessed seven times every second week. In the experiment on rootstocks, significant differences (p=0.008). The new knowledge will be useful for growers, nurserymen and breeders.