Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2022

Til dokument Til datasett

Sammendrag

Aquaponic systems are engineered ecosystems combining aquaculture and plant production. Nutrient rich water is continuously circulating through the system from aquaculture tanks. A biofilter with nitrifying bacteria breaks down fish metabolism ammonia into nitrite and nitrate, which plants and makes the aquaculture wastewater into valued organic fertiliser for the plants, containing essential macro and micro elements. At the same time, the plants are cleaning the water by absorbing ammonia from the fish tanks before it reaches dangerous levels for the aquatic animals. In principle, the only external input is energy, mainly in the form of light and heat, but fish food is also commonly provided. Growing fish food is potentially feasible in a closed loop system, hence aquaponic systems can possibly be an important source of proteins and other important nutrition when, for example, colonising other planets in the future. Fully autonomous aquaponic systems are currently not available. This work aims at minimising manual labour related to cleaning pipes for water transport. The cleaning process must be friendly to both plants and aquatic animals. Hence, in this work, pure mechanical cleaning is adopted. A novel belt-driven continuum robot capable of travelling through small/medium diameter pipes and manoeuvring branches and bends, is designed and tested. The robot is modular and can be extended with different cleaning modules through an interface providing CAN-bus network and electric power. The flexible continuum modules of the robot are characterised. Experimental results demonstrate that the robot is able to travel through pipes with diameters varying from 50 mm to 75 mm, and also capable of handling T-branches of up to 90∘.