Til dokument

Sammendrag

Three subspecies of the ringed seal (Pusa hispida) are found in northeastern Europe: P. h. botnica in the Baltic Sea, P. h saimensis in Lake Saimaa in Finland, and P. h. ladogensis in Lake Ladoga in Russia. We investigated the poorly-known cestode helminth communities of these closely related but ecologically divergent subspecies using COI barcode data. Our results show that, while cestodes from the Baltic Sea represent Schistocephalus solidus, all worms from the two lakes are identified as Ligula intestinalis, a species that has previously not been reported from seals. The observed shift in cestode communities appears to be driven by differential availability of intermediate fish host species in marine vs. freshwater environments. Both observed cestode species normally infect fish-eating birds, so further work is required to elucidate the health and conservation implications of cestode infections in European ringed seals, whether L. intestinalis occurs also in marine ringed seals, and whether the species is able to reproduce in seal hosts. In addition, a deep barcode divergence found within S. solidus suggests the presence of cryptic diversity under this species name.

Til dokument

Sammendrag

Aim It is generally assumed that the degree of resource specialization in herbivorous insects increases towards lower latitudes. However, latitudinal patterns in herbivore diet breadth at large spatial scales remain poorly understood. In this work, we investigated the drivers of latitudinal variation in lepidopteran ‘fundamental’ resource specialization, which we defined as the host breadth when not limited by interspecific interactions at the same trophic level. Location The Japanese archipelago (22°N–45°N), including hemiboreal, temperate and subtropical zones. Taxon Herbivorous butterflies. Methods Species-specific fundamental host breadth was calculated based on pooled host-use records. We investigated the latitudinal pattern and significant drivers of the degree of specialization in regional species pools at a 10-km grid level. As potential drivers, we focused on geography, current climate and diversity and body size of butterflies. Through Bayesian structural equation modelling, we investigated the complicated relationships between these variables and community-level resource specialization represented by three different indices of host breadth. Results We found that the fundamental resource specialization of butterfly communities increases towards higher latitudes. This pattern is contrary to the presumed general trend found in studies based on realized resource specialization within local communities. We found that the observed pattern is driven mainly by factors related to climate, butterfly diversity and body size in each community. Above all, annual mean temperature most strongly drove community-level fundamental host breadth of herbivorous butterflies. Main conclusions Our findings suggest that the fundamental resource specialization may show different latitudinal patterns from the conventional prediction based on knowledge of realized resource specialization. Our results emphasize the importance of the current climate as a major factor regulating butterfly morphology and fundamental host breadth, regardless of whether the impact is direct or indirect.

Til dokument

Sammendrag

Accumulation of certain phenolics is a well-known response of plants to enhanced UVB radiation (280–315 nm), but few experiments have compared the relative importance of different phenolic groups for UVB resilience. To study how an altered phenolic profile affects the responses and resilience of silver birch (Betula pendula) to enhanced UVB, we used RNA interference (RNAi) targeting dihydroflavonol reductase (DFR), anthocyanidin synthase (ANS), or anthocyanidin reductase (ANR) to change the accumulation of phenolics. The unmodified control line and RNAi-modified plants were grown for 51 days under ambient or +32% enhanced UVB dose in a greenhouse. RNAi greatly affected phenolic profile and plant growth. There were no interactive effects of RNAi and UVB on growth or photosynthesis, which indicates that the RNAi and unmodified control plants were equally resilient. UVB enhancement led to an accumulation of foliar flavonoids and condensed tannins, and an increase in the density of stem glands and glandular trichomes on upper leaf surfaces in both the control and RNAi-modified plants. Our results do not indicate a photoprotective role for condensed tannins. However, decreased growth of high-flavonoid low-tannin DFRi and ANRi plants implies that the balance of flavonoids and condensed tannins might be important for normal plant growth.

Til dokument

Sammendrag

Hymenoptera is a hyperdiverse insect order represented by over 153,000 different species. As many hymenopteran species perform various crucial roles for our environments, such as pollination, herbivory, and parasitism, they are of high economic and ecological importance. There are 99 hymenopteran genomes in the NCBI database, yet only five are representative of the paraphyletic suborder Symphyta (sawflies, woodwasps, and horntails), while the rest represent the suborder Apocrita (bees, wasps, and ants). Here, using a combination of 10X Genomics linked-read sequencing, Oxford Nanopore long-read technology, and Illumina short-read data, we assembled the genomes of two willow-galling sawflies (Hymenoptera: Tenthredinidae: Nematinae: Euurina): the bud-galling species Euura lappo and the leaf-galling species Eupontania aestiva. The final assembly for E. lappo is 259.85 Mbp in size, with a contig N50 of 209.0 kbp and a BUSCO score of 93.5%. The E. aestiva genome is 222.23 Mbp in size, with a contig N50 of 49.7 kbp and a 90.2% complete BUSCO score. De novo annotation of repetitive elements showed that 27.45% of the genome was composed of repetitive elements in E. lappo and 16.89% in E. aestiva, which is a marked increase compared to previously published hymenopteran genomes. The genomes presented here provide a resource for inferring phylogenetic relationships among basal hymenopterans, comparative studies on host-related genomic adaptation in plant-feeding insects, and research on the mechanisms of plant manipulation by gall-inducing insects.

Til dokument

Sammendrag

While free-living herbivorous insects are thought to harbor microbial communities composed of transient bacteria derived from their diet, recent studies indicate that insects that induce galls on plants may be involved in more intimate host–microbe relationships. We used 16S rDNA metabarcoding to survey larval microbiomes of 20 nematine sawfly species that induce bud or leaf galls on 13 Salix species. The 391 amplicon sequence variants (ASVs) detected represented 69 bacterial genera in six phyla. Multi-variate statistical analyses showed that the structure of larval microbiomes is influenced by willow host species as well as by gall type. Nevertheless, a “core” microbiome composed of 58 ASVs is shared widely across the focal galler species. Within the core community, the presence of many abundant, related ASVs representing multiple distantly related bacterial taxa is reflected as a statistically significant effect of bacterial phylogeny on galler–microbe associations. Members of the core community have a variety of inferred functions, including degradation of phenolic compounds, nutrient supplementation, and production of plant hormones. Hence, our results support suggestions of intimate and diverse interactions between galling insects and microbes and add to a growing body of evidence that microbes may play a role in the induction of insect galls on plants.

Til dokument

Sammendrag

Loss of Arctic sea ice owing to climate change is predicted to reduce both genetic diversity and gene flow in ice-dependent species, with potentially negative consequences for their long-term viability. Here, we tested for the population-genetic impacts of reduced sea ice cover on the polar bear (Ursus maritimus) sampled across two decades (1995–2016) from the Svalbard Archipelago, Norway, an area that is affected by rapid sea ice loss in the Arctic Barents Sea. We analysed genetic variation at 22 microsatellite loci for 626 polar bears from four sampling areas within the archipelago. Our results revealed a 3–10% loss of genetic diversity across the study period, accompanied by a near 200% increase in genetic differentiation across regions. These effects may best be explained by a decrease in gene flow caused by habitat fragmentation owing to the loss of sea ice coverage, resulting in increased inbreeding of local polar bears within the focal sampling areas in the Svalbard Archipelago. This study illustrates the importance of genetic monitoring for developing adaptive management strategies for polar bears and other ice-dependent species.

Til dokument

Sammendrag

Wildlife species living in proximity with humans often suffer from various anthropogenic factors. Here, we focus on the endangered Saimaa ringed seal (Pusa hispida saimensis), which lives in close connection with humans in Lake Saimaa, Finland. This unique endemic population has remained landlocked since the last glacial period, and it currently consists of only ~400 individuals. In this review, we summarize the current knowledge on the Saimaa ringed seal, identify the main risk factors and discuss the efficacy of conservation actions put in place to ensure its long-term survival. The main threats for this rare subspecies are bycatch mortality, habitat destruction and increasingly mild winters. Climate change, together with small population size and an extremely impoverished gene pool, forms a new severe threat. The main conservation actions and priorities for the Saimaa ringed seal are implementation of fishing closures, land-use planning, protected areas, and reduction of pup mortality. Novel innovations, such as provisioning of artificial nest structures, may become increasingly important in the future. Although the Saimaa ringed seal still faces the risk of extinction, the current positive trend in the number of seals shows that endangered wildlife populations can recover even in regions with considerable human inhabitation, when legislative protection is combined with intensive research, engagement of local inhabitants, and innovative conservation actions. Such multifaceted conservation approaches are needed in a world with a growing human population and a rapidly changing climate.

Til dokument

Sammendrag

The effective size of a population (Ne), which determines its level of neutral variability, is a key evolutionary parameter. Ne can substantially depart from census sizes of present-day breeding populations (NC) as a result of past demographic changes, variation in life-history traits and selection at linked sites. Using genome-wide data we estimated the long-term coalescent Ne for 17 pinniped species represented by 36 population samples (total n = 458 individuals). Ne estimates ranged from 8,936 to 91,178, were highly consistent within (sub)species and showed a strong positive correlation with NC (R2adj = 0.59; P = 0.0002). Ne/NC ratios were low (mean, 0.31; median, 0.13) and co-varied strongly with demographic history and, to a lesser degree, with species’ ecological and life-history variables such as breeding habitat. Residual variation in Ne/NC, after controlling for past demographic fluctuations, contained information about recent population size changes during the Anthropocene. Specifically, species of conservation concern typically had positive residuals indicative of a smaller contemporary NC than would be expected from their long-term Ne. This study highlights the value of comparative population genomic analyses for gauging the evolutionary processes governing genetic variation in natural populations, and provides a framework for identifying populations deserving closer conservation attention.

Til dokument

Sammendrag

The lumpfish Cyclopterus lumpus is commercially exploited in numerous areas of its range in the North Atlantic Ocean, and is important in salmonid aquaculture as a biological agent for controlling sea lice. Despite the economic importance, few genetic resources for downstream applications, such as linkage mapping, parentage analysis, marker-assisted selection (MAS), quantitative trait loci (QTL) analysis, and assessing adaptive genetic diversity are currently available for the species. Here, we identify both genome- and transcriptome-derived microsatellites loci from C. lumpus to facilitate such applications. Across 2,346 genomic contigs, we detected a total of 3,067 microsatellite loci, of which 723 were the most suitable ones for primer design. From 116,555 transcriptomic unigenes, we identified a total of 231,556 microsatellite loci, which may indicate a high coverage of the available STRs. Out of these, primer pairs could only be designed for 6,203 loci. Dinucleotide repeats accounted for 89 percent and 52 percent of the genome- and transcriptome-derived microsatellites, respectively. The genetic composition of the dominant repeat motif types showed differences from other investigated fish species. In the genome-derived microsatellites AC/GT (67.8 percent), followed by AG/CT (15.1 percent) and AT/AT (5.6 percent) were the major motifs. Transcriptome-derived microsatellites showed also most dominantly the AC/GT repeat motif (33 percent), followed by A/T (26.6 percent) and AG/CT (11 percent). Functional annotation of microsatellite-containing transcriptomic sequences showed that the majority of the expressed sequence tags encode proteins involved in cellular and metabolic processes, binding activity and catalytic reactions. Importantly, STRs linked to genes involved in immune system process, growth, locomotion and reproduction were discovered in the present study. The extensive genomic marker information reported here will facilitate molecular ecology studies, conservation initiatives and will benefit many aspects of the breeding programmes of C. lumpus.

Til dokument Til datasett

Sammendrag

Interspecific brood parasitism is common in many animal systems. Brood parasites enter the nests of other species and divert host resources for producing their own offspring, which can lead to strong antagonistic parasite–host coevolution. Here, we look at commonalities among social insect species that are victims of brood parasites, and use phylogenetic data and information on geographical range size to predict which species are most probably to fall victims to brood parasites in the future. In our analyses, we focus on three eusocial hymenopteran groups and their brood parasites: (i) bumblebees, (ii) Myrmica ants, and (iii) vespine and polistine wasps. In these groups, some, but not all, species are parasitized by obligate workerless inquilines that only produce reproductive-caste descendants.We find phylogenetic signals for geographical range size and the presence of parasites in bumblebees, but not in ants and wasps. Phylogenetic logistic regressions indicate that the probability of being attacked by one or more brood parasite species increases with the size of the geographical range in bumblebees, but the effect is statistically only marginally significant in ants. However, non-phylogenetic logistic regressions suggest that bumblebee species with the largest geographical range sizes may have a lower likelihood of harbouring social parasites than do hosts with medium-sized ranges. Our results provide new insights into the ecology and evolution of host–social parasite systems, and indicate that host phylogeny and geographical range size can be used to predict threats posed by social parasites, as well to design efficient conservation measures for both hosts and their parasites. This article is part of the theme issue ‘The coevolutionary biology of brood parasitism: from mechanism to pattern’.

Sammendrag

Habitat discontinuity, anthropogenic disturbance, and overharvesting have led to population fragmentation and decline worldwide. Preservation of remaining natural genetic diversity is crucial to avoid continued genetic erosion. Brown trout (Salmo trutta L.) is an ideal model species for studying anthropogenic influences on genetic integrity, as it has experienced significant genetic alterations throughout its natural distribution range due to habitat fragmentation, overexploitation, translocations, and stocking. The Pasvik River is a subarctic riverine system shared between Norway, Russia, and Finland, subdivided by seven hydroelectric power dams that destroyed about 70% of natural spawning and nursing areas. Stocking is applied in certain river parts to support the natural brown trout population. Adjacent river segments with different management strategies (stocked vs. not stocked) facilitated the simultaneous assessment of genetic impacts of dams and stocking based on analyses of 16 short tandem repeat loci. Dams were expected to increase genetic differentiation between and reduce genetic diversity within river sections. Contrastingly, stocking was predicted to promote genetic homogenization and diversity, but also potentially lead to loss of private alleles and to genetic erosion. Our results showed comparatively low heterozygosity and clear genetic differentiation between adjacent sections in nonstocked river parts, indicating that dams prevent migration and contribute to genetic isolation and loss of genetic diversity. Furthermore, genetic differentiation was low and heterozygosity relatively high across stocked sections. However, in stocked river sections, we found signatures of recent bottlenecks and reductions in private alleles, indicating that only a subset of individuals contributes to reproduction, potentially leading to divergence away from the natural genetic state. Taken together, these results indicate that stocking counteracts the negative fragmentation effects of dams, but also that stocking practices should be planned carefully in order to ensure long‐term preservation of natural genetic diversity and integrity in brown trout and other species in regulated river systems.

Til dokument

Sammendrag

The insect order Hymenoptera originated during the Permian nearly 300 Mya. Ancestrally herbivorous hymenopteran lineages today make up the paraphyletic suborder ‘Symphyta’, which encompasses c. 8200 species with very diverse host-plant associations. We use phylogeny-based statistical analyses to explore the drivers of diversity dynamics within the ‘Symphyta’, with a particular focus on the hypothesis that diversification of herbivorous insects has been driven by the explosive radiation of angiosperms during and after the Cretaceous. Our ancestral-state estimates reveal that the first symphytans fed on gymnosperms, and that shifts onto angiosperms and pteridophytes – and back – have occurred at different time intervals in different groups. Trait-dependent analyses indicate that average net diversification rates do not differ between symphytan lineages feeding on angiosperms, gymnosperms or pteridophytes, but trait-independent models show that the highest diversification rates are found in a few angiosperm-feeding lineages that may have been favoured by the radiations of their host taxa during the Cenozoic. Intriguingly, lineages-through-time plots show signs of an early Cretaceous mass extinction, with a recovery starting first in angiosperm-associated clades. Hence, the oft-invoked assumption of herbivore diversification driven by the rise of flowering plants may overlook a Cretaceous global turnover in insect herbivore communities during the rapid displacement of gymnosperm- and pteridophyte-dominated floras by angiosperms.

Til dokument

Sammendrag

Biogeography has traditionally focused on the spatial distribution and abundance of species. Both are driven by the way species interact with one another, but only recently community ecologists realized the need to document their spatial and temporal variation. Here, we call for an integrated approach, adopting the view that community structure is best represented as a network of ecological interactions, and show how it translates to biogeography questions. We propose that the ecological niche should encompass the effect of the environment on species distribution (the Grinnellian dimension of the niche) and on the ecological interactions among them (the Eltonian dimension). Starting from this concept, we develop a quantitative theory to explain turnover of interactions in space and time – i.e. a novel approach to interaction distribution modeling. We apply this framework to host–parasite interactions across Europe and find that two aspects of the environment (temperature and precipitation) exert a strong imprint on species co-occurrence, but not on species interactions. Even where species co-occur, interaction proves to be stochastic rather than deterministic, adding to variation in realized network structure. We also find that a large majority of host-parasite pairs are never found together, thus precluding any inferences regarding their probability to interact. This first attempt to explain variation of network structure at large spatial scales opens new perspectives at the interface of species distribution modeling and community ecology.

Til dokument Til datasett

Sammendrag

We describe Arge bella Wei & Du sp. nov., a large and beautiful species of Argidae from south China, and report its mitochondrial genome based on high-throughput sequencing data. We present the gene order, nucleotide composition of proteincoding genes (PCGs), and the secondary structures of RNA genes. The nearly complete mitochondrial genome of A. bella has a length of 15,576 bp and a typical set of 37 genes (22 tRNAs, 13 PCGs, and 2 rRNAs). Three tRNAs are rearranged in the A. bella mitochondrial genome as compared to the ancestral type in insects: trnM and trnQ are shuffled, while trnW is translocated from the trnW -trnC-trnY cluster to a location downstream of trnI. All PCGs are initiated by ATN codons, and terminated with TAA, TA or T as stop codons. All tRNAs have a typical cloverleaf secondary structure, except for trnS1. H821 of rrnS and H976 of rrnL are redundant. A phylogenetic analysis based on mitochondrial genome sequences of A. bella, 21 other symphytan species, two apocritan representatives, and four outgroup taxa supports the placement of Argidae as sister to the Pergidae within the symphytan superfamily Tenthredinoidea.