Til dokument

Sammendrag

Wild lingonberries are a traditional source of food in the Nordic countries and an important contributor to economic activity of non-wood forest products in the region. Lingonberries are a rich source of bioactive compounds and can be a valuable contributor to a healthy diet. However, there are few studies available on how the bioactive compounds in lingonberries develop as they ripen. In this investigation, we examined the content of 27 phenolic compounds, three sugars, four organic acids, and 71 volatile organic compounds at five ripening stages. The study showed that, while the highest content of phenolic compounds was found early in the development, the organoleptic quality of the fruits improved as they ripened. From the first to the last stage of development, anthocyanins went from being nearly absent to 100 mg/100 g fw, and there was an increased content of sugars from 2.7 to 7.2 g/100 g fw, whereas the content of organic acids decreased from 4.9 to 2.7 g/100 g fw, and there were several changes in the profile of volatiles. The contents of flavonols, cinnamic acid derivatives, flavan-3-ols, and the total concentration of phenolic compounds were significantly lower in the fully ripe berries compared to berries in the early green stage. In addition to the changes occurring due to ripening, there was observed variation in the profile of both phenolic compounds and volatiles, depending on the growth location of the berries. The present data are useful for the assessment of harvest time to obtain the desired quality of lingonberries.

Sammendrag

High yields are needed for profitability under shielded strawberry production. June bearing strawberry cultivars require a short day (SD) period in order to initiate generative growth. Nitrogen availability going into the SD-period, as well as during the period, can affect the process. To increase the knowledge about optimized nitrogen fertilizing, an experiment was set up under controlled conditions. Strawberry plants of the cultivar ‘Sonata’ were grown under combinations of different levels of nitrogen to evaluate its effect on timing on growth, flowering time and the number of flowers produced. The result showed that the time for opening of the first flower, the interaction between the pre-SD nitrogen level and the nitrogen level applied during the SD had the highest impact, and that low levels pre-SD flowered earlier. The number of flowers produced was affected by both pre-SD and SD nitrogen level as well as its interactions. Low nitrogen levels throughout had low yield potential while when low pre-SD nitrogen level was followed by high levels during SD, the yield increased.

Til dokument

Sammendrag

Lingonberries (Vaccinium vitis-idaea L.) from two locations, northern (69°N, 18°E) and southern (59°N, 10°E) Norway, were grown under controlled conditions in a phytotron at two temperatures (9 and 15 °C) to study the effects of the ripening temperature and origin on the chemical composition of the berries. The concentrations of phenolic compounds, sugars, and organic acids as well as the profile of volatile organic compounds (VOCs) were determined using chromatographic and mass spectrometric methods. Five anthocyanins, eleven flavonols, eight cinnamic acid derivatives, three flavan-3-ols, three sugars, three organic acids, and 77 VOCs were identified, of which 40 VOCs had not previously been reported in lingonberries. Berries from both locations, were found to have higher contents of anthocyanins and cinnamic acid derivatives when ripened at lower temperature (9 °C), compared to the higher temperature (15 °C). Lingonberries of northern origin had a different VOC profile and higher contents of anthocyanins and organic acids than berries originating from the south. Lingonberries from the northern location also had higher proportions of cyanidin-3-O-glucoside and cyanidin-3-O-arabinoside than lingonberries from the southern location. The results show that the composition of lingonberries is influenced by both the environment and the origin of the plants, with phenolic compounds mainly influenced by the growth temperature and VOCs mainly influenced by plant origin.

Til dokument

Sammendrag

Lingonberries (Vaccinium vitis-idaea L.) have received much positive attention due to their exotic taste and high phenolic content. These small red fruits grow across Norway, a country with large variations in abiotic and biotic growth conditions. The large variations in abiotic and biotic growth conditions have potential to influence quality and availability of lingonberries. A three-year study (2019-2021) with 64 field plots across Norway have therefore been set up, with the aim of studying the effect of climate and growth conditions on lingonberries. Here, anthocyanin content in berries from the first growth season is presented. Eight locations across Norway (58 to 69°N) with supposed high production potential of lingonberries were selected. Within each location, eight stands (250 m2) with different biotic conditions were chosen. Berries from each sector were lyophilised and extracted with 70% methanol. Phenolic compounds were analysed by HPLC-DAD-MSn, with quantification of anthocyanin at 520 nm and MS used for identification. The three major anthocyanins in Norwegian lingonberries were cyanidin-3-galactoside (69-90%), -arabinoside (6-23%) and 
-glucoside (2-10%). Additionally, small quantities of three other cyanidin glycosides were preliminarily identified. The total content of anthocyanins in lingonberries ranged from approximately 320 to 790 mg 100 g‑1 dw. There appears to be a variation in anthocyanin concentration linked to latitude. However, as the variation was as large within the stands of each location as they were between the locations, different growth factors would also play key parts in synthesis of anthocyanins in lingonberries. Results from analysis of berries collected in 2020 and 2021 are necessary to have the basis to draw a conclusion on how biotic and abiotic factors influence anthocyanin content of lingonberries.

Til dokument

Sammendrag

Lingonberry is an evergreen dwarf shrub abundant in the area of Nordic countries and a food traditionally regarded as a staple of Nordic diets. There is however limited commercial harvest of these readily available berries. The objective of this doctoral thesis is to investigate how the composition Norwegian lingonberries vary and is affected by abiotic and biotic growth conditions. The thesis consists of four papers of which three studies were conducted in controlled conditions investigating the effects of ripening, light conditions, and temperature during ripening on the composition of the targeted compounds in lingonberries. The fourth paper of the thesis investigates the variation in composition of wild Norwegian lingonberries and how different environmental factors influence this composition. In lingonberries, in total 29 phenolic compounds, sucrose, glucose and fructose as well as 4 organic acids and 77 volatile organic compounds were detected.. In the controlled studies time of harvest significantly influenced the quality of the lingonberries. Spectral light composition with supplemental blue wavelengths increased the content of anthocyanins, and slightly influenced the ratio of sugars to organic acids. There was only a limited effect of light intensity on the content of anthocyanins in lingonberries. Berries grown at lower temperatures had a higher content of anthocyanins and organic acids, whereas the other phenolic compounds were not significantly influenced. Latitude and temperature had the most significant effect on the content of anthocyanins in lingonberries. While light conditions only slightly influence berry quality, factors such as amount of precipitation during ripening, the density of deciduous trees, and altitude also significantly influenced berry quality. Precipitation influenced the content of organic acids in the field study. The result from this study further strengthens the evidence that lingonberries are a rich source for dietary polyphenols, and that berry quality increases with later harvest times. High quality lingonberries can be found across the country with large variation within local areas. The combination of field experiments and controlled experiments showed that weather conditions during ripening, latitude and density of deciduous trees all influence berry quality.

Til dokument

Sammendrag

Almost 95% of the area in Norway is wilderness and 38% of the land area is covered by woods. These areas are abundant in valuable renewable resources, including wild berries. In our neighbouring countries, Sweden and Finland, wild berries are already a big industry. At the same time, on the market the Norwegian wild berries are almost non-existent and berries are left unexploited. Lingonberry (Vaccinium vitis-idaea) is one of the most abundant and economically important wild berries in the Nordic countries. Nevertheless, lingonberry has a large untapped potential due to its unique health effects and potential for increased value creation. It is estimated that 111,500 t of lingonberry are produced in the Norwegian woods. Norway is a long and diverse country with a range of climatic conditions. Adaptations to different conditions can give differences in both yield and quality of wild berries. Yields vary enormously from year to year and among different locations. A steady supply, predictable volumes and high quality are vital for successful commercialization of wild berries. To increase the utilization of berries, there is a need for increased knowledge regarding availability and quality variation of the berries. In addition, the Norwegian market suffers from high labour costs and cannot compete in product price. Innovative solutions and new knowledge on quality aspects can open possibilities for value creation. Toward achieving this goal, we have created a project called “WildBerries”, the main objective of which is to produce research-based knowledge that will create the basis for increased commercial utilization of Norwegian wild berries.

Til dokument

Sammendrag

Berries of the genus Vaccinium are highly valued health-beneficial superfoods, which are commonly subjected to adulteration and mixed with each other, or with other common berry species. A quantitative DNA-based method utilizing a chip-based digital polymerase chain reaction (dPCR) technique was developed for identifying and quantifying wild lingonberry (V. vitis-idaea) and cultivated American cranberry (V. macrocarpon). The dPCR method with species-specific primers for mini-barcoding was designed based on the indel regions found in the trnI-CAU–trnL-CAA locus in the chloroplast genome. The designed primers were able to amplify only target species, enabling to distinguish the two closely related species with good sensitivity. Our results illustrated the ability of the method to identify lingonberry and American cranberry DNA using PCR without the need for probes or further sequencing. The dPCR method could also quantify the DNA copy number in mixed samples. Based on this study, the method provides a basis for a simple, fast, and sensitive quantitative authentication analysis of lingonberry and American cranberry by dPCR. Moreover, it can also provide a platform for authentication analyses of other plant species as well by utilizing the indel regions of chloroplast genomes.

Til dokument

Sammendrag

Cuticle is the first layer protecting plants against external biotic and abiotic factors and is responsive to climatic factors as well as determined by genetic adaptations. In this study, the chemical composition of bilberry fruit cuticular wax was investigated through a latitudinal gradient from Latvia (56°N 24°E) through Finland (65°N 25°E) to northern Norway (69°N 18°E) in two seasons 2018 and 2019. Changes in the major cuticular wax compounds, including triterpenoids, fatty acids, alkanes, aldehydes, ketones, and primary alcohols, were detected by GC-MS analysis. Generally, a decreasing trend in the proportion of triterpenoids from southern to northern latitudes, accompanied with an increase in proportion of fatty acids, aldehydes, and alkanes, in bilberry fruit cuticular wax was observed. A correlation analysis between climatic factors with proportion of wax compounds indicated that temperature was the main factor affecting the cuticular wax composition in bilberries. A controlled phytotron experiment with southern and northern bilberry ecotypes confirmed the major effect of temperature on bilberry fruit cuticular wax load and composition. Elevated temperature increased wax load most in berries of northern ecotypes. The level of triterpenoids was higher, while levels of fatty acids and alkanes were lower, in wax of bilberry fruits ripened at 18°C compared to 12°C in both northern and southern ecotypes. Based on our results, it can be postulated that the predicted increase in temperature due to climate change leads to alterations in fruit cuticular wax load and composition. In northern ecotypes, the alterations were especially evident.

Til dokument

Sammendrag

Berries represent one of the most important and high-valued group of modern-day health-beneficial “superfoods” whose dietary consumption has been recognized to be beneficial for human health for a long time. In addition to being delicious, berries are rich in nutrients, vitamins, and several bioactive compounds, including carotenoids, flavonoids, phenolic acids, and hydrolysable tannins. However, due to their high value, berries and berry-based products are often subject to fraudulent adulteration, commonly for economical gain, but also unintentionally due to misidentification of species. Deliberate adulteration often comprises the substitution of high-value berries with lower value counterparts and mislabeling of product contents. As adulteration is deceptive toward customers and presents a risk for public health, food authentication through different methods is applied as a countermeasure. Although many authentication methods have been developed in terms of fast, sensitive, reliable, and low-cost analysis and have been applied in the authentication of a myriad of food products and species, their application on berries and berry-based products is still limited. The present review provides an overview of the development and application of analytical chemistry methods, such as isotope ratio analysis, liquid and gas chromatography, spectroscopy, as well as DNA-based methods and electronic sensors, for the authentication of berries and berry-based food products. We provide an overview of the earlier use and recent advances of these methods, as well as discuss the advances and drawbacks related to their application.

Til dokument

Sammendrag

Organic agriculture is acquiring increased attention in Armenia with numerous projects and initiatives prioritizing production of ecologically clean agricultural products. Application of organic fertilizers is one of the key factors supporting sustainable organic production of fruits and vegetables, which requires knowledge of fertilization regimes adapted to crop types for achieving optimum productivity. The present study evaluates the effect of the organic fertilizer “Bioklad” (Bioklad Ltd.) on growth and development of strawberry plantlets. Three concentrations of the organic fertilizer, 1:400, 1:200 and 1:100 dilutions of the concentrate were tested. Plantlets of the cultivar ‘Sonata’ were grown for nine weeks in pots under controlled conditions in a phytotron. Yield, biomass and total phenolic content were not significantly different between Bioklad application treatments. Nevertheless, the Bioklad at the intermediate dilution 1:200 was most optimal for strawberry growth. The analysis of chemical composition of leaves indicated that nitrogen content was higher in plants grown at the lowest dilution (1:100) of Bioklad. In addition, plantlets had the lowest phenolic content at this treatment. Based on the presented results of Bioklad’s effect on strawberry plantlets growth, cost/value insight of this organic fertilizer has been estimated.

Til dokument

Sammendrag

The natural light conditions above the Arctic Circle are unique in terms of annual variation creating special growth conditions for crop production. These include low solar elevations, very long daily photosynthetic light periods, midnight sun/absence of dark nights, and altered spectral distribution depending on solar elevation. All these factors are known to affect the growth and the metabolism of plants, although their influence on northern crop plants has not yet been reviewed. The ongoing global warming is especially affecting the temperature × light interactions in the Arctic, and understanding the impact on crop production and plant metabolism will be important for an Arctic contribution to global food production. Arctic light conditions have a strong influence on the timing of plant development, which together with temperature limits the number of cultivars suitable for Arctic agriculture. This review compiles information from the reports about the effects of light conditions at high latitudes on growth, biomass production, flowering and quality of the crop plants and discusses the gained knowledge and the key gaps to be addressed.

Til dokument

Sammendrag

Vaccinium genus berries—wild bilberries (Vaccinium myrtillus L.) and cultivated highbush blueberries (Vaccinium corymbosum L.)—are consumed worldwide, and their consumption has a trend of stable increase. Thus, considering their wide use in ethnomedicine, for juice and jam production, as functional food, as well as their use in preparations of extracts which have application potential in pharmaceutical and cosmetics industries, studies regarding the composition of these berries are of special importance. The aim of this study is to characterise the elemental and isotopic composition, as well as variation in element concentration in bilberries gathered from different sites in Northern Europe and in commercially available blueberry samples from across the World. Furthermore, our aim was to develop tools for authenticity and quality control of these berries. The elemental composition of berries was analysed using inductively coupled plasma with optical emission detection (ICP-OED), while isotope ratio mass spectrometry (IRMS) was used for the determination of isotope ratio values. The results demonstrated detectable differences between macro- and microelement values in bilberries. IRMS analysis of blueberries revealed significant differences in isotope ratios based on the place of origin, indicating the possibility to use this analytical method for authenticity testing. In none of the samples, pollution was detected, even though there were indications of different growth conditions and geochemical differences affecting bilberry composition.

Sammendrag

Bærproduksjon i plasttunnel har blitt trukket frem som en løsning for økologisk bærdyrking. Et slikt produksjonssystem er relativt nytt i Norge, og det er behov for mer kunnskap for å optimalisere produksjonen. I perioden 2017-2019 har vi gjennom prosjektet “Økologisk tunnelbær og flytende næring”, finansiert av Kunnskapsutviklingsmidler for økologisk produksjon i NIBIO, hatt ulike forsøk ved forskningsstasjonene Holt og Apelsvoll for å øke kunnskapen om dyrkingstekniske utfordringer for økologisk bærproduksjon.

Sammendrag

Det går mot den beste multesesongen på flere tiår, og det kan vi blant annet takke den kalde og våte våren for, mener forsker Anne Linn Hykkerud ved Norsk Institutt for Bioøkonomi: - Årsaken til det er først og fremst forholdene vi hadde på sensommeren og høsten da vi lagde blomsteranleggene. Vi tror forholdene vi hadde i vår, hvor vi hadde en sen vår med mye snø, gjorde at alt lå klart når snøen endelig smeltet. Insektene og blomstene kommer samtidig, og det gir god pollinering.

Sammendrag

Det går mot den beste multesesongen på flere tiår, og det kan vi blant annet takke den kalde og våte våren for, mener forsker Anne Linn Hykkerud ved Norsk Institutt for Bioøkonomi: - Årsaken til det er først og fremst forholdene vi hadde på sensommeren og høsten da vi lagde blomsteranleggene. Vi tror forholdene vi hadde i vår, hvor vi hadde en sen vår med mye snø, gjorde at alt lå klart når snøen endelig smeltet. Insektene og blomstene kommer samtidig, og det gir god pollinering.

Sammendrag

Agroforestry can be defined as sustainable and multifunctional land-use systems where trees are managed together with agricultural crops or livestock on the same piece of land. In the northern periphery area, agroforestry has a long history with woodland grazing, reindeer husbandry and gathering of different non-wood forest resources as herbs, mushrooms and berries. Traditional agroforestry has gradually disappeared during the 20th century with the intensification of agriculture and forestry. Currently agroforestry systems are gaining new interest, not only from farmers but also from politicians, as this practice can possibly contribute to a more sustainable way of agricultural production. In the northern periphery area, the benefits of agroforestry practices can be manifold not only promoting traditional practices, but also novel systems with the use of new technology. In addition, agroforestry has environmental benefits as a method for conservation and enhancement of biodiversity, improved nutrient cycling, and water quality. Soil humus layer will also increase with several agroforestry systems leading to carbon sequestration. Here we present an overview of agroforestry practices in the Nordic countries and the use of non-wood forest resources with the emphasis on wild berries.

Til dokument

Sammendrag

The aerial parts of land plants are covered by a hydrophobic layer called cuticle that limits non-stomatal water loss and provides protection against external biotic and abiotic stresses. The cuticle is composed of polymer cutin and wax comprising a mixture of very-long-chain fatty acids and their derivatives, while also bioactive secondary metabolites such as triterpenoids are present. Fleshy fruits are also covered by the cuticle, which has an important protective role during the fruit development and ripening. Research related to the biosynthesis and composition of cuticles on vegetative plant parts has largely promoted the research on cuticular waxes in fruits. The chemical composition of the cuticular wax varies greatly between fruit species and is modified by developmental and environmental cues affecting the protective properties of the wax. This review focuses on the current knowledge of the cuticular wax biosynthesis during fleshy fruits development, and on the effect of environmental factors in regulation of the biosynthesis. Bioactive properties of fruit cuticular waxes are also briefly discussed, as well as the potential for recycling of industrial fruit residues as a valuable raw material for natural wax to be used in food, cosmetics and medicine.

Sammendrag

Kuldetolerante grønnsaker er planter som har utviklet beskyttelse av vekstpunktet mot kulde og frost. Selv med noen frostnetter er, fortsetter disse plantene å vokse når temperatur og lys om dagen, tillater det. Det gir unike muligheter til å utvide grønnsakssesongen, og gi en «skuldersesong» fra sensommer til tidlig vinter. Egnede planter står ute på feltet gjennom vinteren, for å gi produksjon tidlig neste vår. Fordelene med produksjon av kuldetolerante grønnsaker, er innføring av en ny «skuldersesong», redusert næringstap fra jorda, lite utfordringer med skadedyr, gi et større mangfold innen nyhøstete vintergrønnsaker til forbruker, øke verdigrunnlaget for dyrkere og øke regionale muligheter for sysselsetting. Det er utført vekstforsøk på tre utvalgte steder i landet med ulike årsvariasjoner, med hensyn til daglengde og temperatur. Grønnsakssorter ble valgt ut etter evne til å tolerere kulde i tillegg til rask utviklingstid. Mange av disse grønnsakene har en stor utfordring med stokkrenning, men løsningen ble sen såing, fra slutten av juli til begynnelsen av august. Det blir tidligere lave temperaturer i Nord-Norge og og til dels på Østlandet, slik at den optimale vekstperioden er noe kortere enn på Sørlandet. Det ble testet om forkultivering inne av småplanter for utsetting på felt, kunne bidra til å gi større planter før høsting. I våre forsøk etablerte de direktesådde grønnsakene seg raskest og fikk størst avling. Grønnsakene fikk også en mildere og søtere smak om de ble høstet etter en liten kuldeperiode.

Sammendrag

There is a large industrial demand for wax. The market is dominated by synthetic waxes. In contrast to the synthetic wax natural waxes are renewable and thus contribute to sustainalbe processes and reduced carbon emission. In Scandinavia side streams from Wild berries is an interesting candidate for wax production.

Sammendrag

Numerous species of wild berries are abundant in the Nordic forests, mountains and peat lands. They ripen throughout the early summer until late autumn. Both lingonberry (Vaccinium vitis-idaea) and bilberry (Vaccinium myrtillus), that are among the most picked wild berries, are characteristic field layer species in boreal forests. Other species that have potential of better exploitation are cloudberry (Rubus chamaemorus), crowberry (Empeterum nigrum), bog blueberry (Vaccinium uliginosum), arctic bramble (Rubus arcticus), wild strawberries/woodland strawberries (Fragaria vesca) and wild raspberries (Rubus idaeus). Here we present a mini-review about properties and potentials of Nordic wild berries.

Sammendrag

BACKGROUND: Interest in the wild berries of dwarf shrubs (wild berries) is increasing. Therefore, an update is important regarding how these species react to and interact with different climatic factors, and on how the predicted climatic changes will affect their distribution, growth and content of compounds affecting health. OBJECTIVE: To systemize knowledge of the Ericaceae and Empetraceae wild berry species. METHODS: A review of literature covering the above topics. CONCLUSION: This review includes five wild berry species and their subspecies: Vaccinium myrtillus, Vaccinium vitis-idaea, Vaccinium uliginosum, Vaccinium oxycoccos with ssp. microcarpon, and Empetrum nigrum with ssp. nigrum, hermaphroditum and japonicum. They have been and still are collected in the wild, by local households and industry. The berries have high content of biological compounds of interest for human health. Despite the increasing interest in and demand for these wild berries, domestication attempts have been rare. The species often grow together and are competitors. Which species dominate depends on soil conditions and is determined by small differences. The changing climate and various disturbances will also influence the distribution patterns of wild berries and competing plant species. Semi-cultivation in the natural habitat is probably the best solution for viable and sustainable commercial exploitation of these resources, at least if they are sold with the label “wild berries”. However, these species are easily propagated by fresh cuttings, and they can grow on arable land, adapting soil conditions to fit their growing preferences. Such cultivation, to our knowledge has not yet been performed on a large economic scale.

Sammendrag

BACKGROUND: There are increasing demands for wild berries not only for various food and beverage products, but also in cosmetics and for extraction of various biochemical compounds. The newly funded project “WILDBERRIES” (Norwegian Research Council) will focus on predictability of yield and quality of lingonberry (Vaccinium vitis - idaea). With characteristics like taste, secondary metabolites with health properties, versatility and preservative properties there is a great potential for value creation. It is estimated that the annual crop of lingonberries in Norway is 115,000 tones, most of it non-exploited. One of the key challenges for further commercialization is access to the raw material. The Norwegian topography are challenging for the logistic around harvesting. However, the same landscape can possibly give unique qualities. The availability and quality of wild berry yields vary from year to year and from locations to location. Yields are affected by climatic conditions years in advance, during the ripening and condition and management of the forest. OBJECTIVE: WILDBERRIES aim to increase the commercial utilization of wild berries from Norwegian forests. METHODS: WILDBERRIES seek to develop tools to map areas with high yields and/or high-quality berries. Experiments at controlled climatic conditions will give new knowledge on key factors affecting flower development, ripening, yield and quality. RESULTS: Plots for phenotyping and berry collection will be established at different sites summer 2019. The existing clone collection of lingonberries will be increased, and controlled experiments will be performed from the second project year. CONCLUSIONS: Wanted outcome of the project are models for prediction of yields and quality of the berries.

Sammendrag

Unike nordlige klimaforhold med lange dager og lave temperaturer, kan påvirke egenskaper hos mat, fôr og beitevekster. En gjennomgang av vitenskapelige studier av slik Arktisk kvalitet viser effekter for både sensorisk kvalitet og ulike innholdsstoffer for flere produkter. Innen kålvekster påvirker klimaet utseende (brokkoli) og reduserer glukosinolatinnhold og bittersmak (brokkoli og kålrot). Gulrot og kålrot får tydeligere søtsmak på grunn av lavere innhold av bitterstoffer, selv om sukkerinnholdet er uendret. På den annen side får gulrot i nord lavere innhold av karoten og lysere farge enn i varmere klima. Resultatene for kålrot, brokkoli og gulrot tyder også på mer sprø og saftig konsistens, og friskere smak, ved lave dyrkingstemperaturer. Ville bær i nordlig klima har litt høyere innhold av enkelte antioksidanter enn i sørligere områder, men lokale forskjeller i vekstforhold (fjell, kyst) kan ha like stor betydning. Hagebær i nordlig klima kan smake søtere (jordbær) eller mindre søte (solbær) på grunn av forskjellige klimaresponser. Jordbær og bringebær får noe svekket rødfarge ved lave dyrkingstemperaturer. Klimatiske og geografiske effekter på kvalitet i potet, urter til mat og krydder, fôrvekster og kjøtt- og melkeprodukter er per idag for lite undersøkt til å gi entydige konklusjoner.....

Sammendrag

Rhodiola rosea is a perennial flowering plant with a long history as a medicine plant. The plant contain a range of bioactive compounds including salidroside, rosavin, rosarian and rosin. Some of the compounds are characterized as adaptogens, meaning they can increase the body’s resistance to various stressors. An increased demand for better pharmaceuticals has stimulated the development of new methods for agricultural as well as in vitro cultivation of medicinal plants. A new technology, called rhizosecretion of biologically active chemicals, can provide a continuous supply of biologically active compounds over the lifetime of plants. The plants will then be grown under controlled conditions. In order to increase the production of bioactive compounds in Rhodiola rosea under these conditions it is therefore hypothesized that the biosynthesis can be upregulated by growing it under specific temperature and light quality treatments. An experiment with different light and temperature regimes was established for optimal accumulation of biologically active compounds. Four different clones of Rhodiola rosea were grown under three different light conditions (red, blue and white) combined with two different temperatures (9 and 18 °C) for three weeks. The gene expression of Tyrosine decarboxylase (TyrDC), found to have a key role in the biosynthesis of salidroside, were investigated. In addition, the content of various bioactive compounds were quantified before and after treatment. The results indicate that use if high producing clones is most important for high production and that there is a short-term upregulation during blue light treatment. During the three-week treatment, there was no significant effect of the temperature treatments.

Sammendrag

Numerous species of wild berries are abundant in the Nordic forests, mountains and peat lands. They ripen throughout the early summer until late autumn. Both lingonberry (Vaccinium vitis-idaea) and bilberry (Vaccinium myrtillus), that are among the most picked wild berries, are characteristic field layer species in boreal forests. Other species that have potential of being better exploited are cloudberry (Rubus chamaemorus), crowberry (Empeterum nigrum), bog blueberry (Vaccinium uliginosum), arctic bramble (Rubus arcticus), wild strawberries/woodland strawberries (Fragaria vesca) and wild raspberries (Rubus idaeus). Wild berries have always been an important part of the Nordic cuisine. However, only about 5–10 per cent of the annual wild berry crop of approximately a billion kilograms are currently picked for private or commercial consumption. There are several challenges towards an increased utilization as year-to-year variation in crop, topography, logistics of berry picking including traceability, fragmented sector structure and the high share of unprocessed raw material in export. The scientific interest for these berries have in the recent years focused on their value concerning human health benefits. Nevertheless, commercialization and innovation of wild berries should focus on multiple use of the whole raw material into many different products. The Nordic wild berries are perfectly adapted to their environment and are well suited to studies of environmental effects on growth, development and quality. Additionally, they represent a valuable genepool for future breeding.

Til dokument

Sammendrag

Cloudberry (Rubus chamaemorus L.) is a wild perennial shrub growing on peatland with a circumpolar distribution. The combined berries have a high polyphenol content comprised primarily of ellagitannins. A few commercial cultivars are available, and pre-breeding trials on clonal material from different geographical origins are in progress. The objective of this study was to investigate how the content of polyphenols of four different cloudberry cultivars were affected by harvesting time and climatic variations during a 3-year-period. Plants were grown outside in plots and berries were harvested when mature. Berries were analyzed for total polyphenols and total anthocyanins by spectrophotometer. Total ellagic acid was identified and quantified using HPLC-MS after hydrolysis of the extracts. Results showed that all measured parameters; total anthocyanins, total polyphenols and ellagic acid are strongly influenced by the genetic background. Although low anthocyanin contents were present in all genotypes, they were highly affected by climatic conditions, being highest at low temperatures. However, the content of ellagic acid was less affected by environmental conditions and showed little response to changing temperatures. In conclusion, ellagitannin content was the most dominating polyphenol group observed in this study and was affected by genetics and is therefore a good breeding criterion for increased health benefit of cloudberry.

Sammendrag

Planter på ulike breddegrader har ulike vekstvilkår relatert til blant annet lysintensitet, daglengde og temperatur. Dette påvirker plantene og innholdsstoffene i dem. Nå er forskerne på jakt etter den dokumenterbare kvalitetsforskjellen mellom mat produsert i nord eller sør.

Sammendrag

Forbruket av økologisk mat har økt jevnt i Norge fra 2011 til 2016, mens det økologiske arealet har blitt redusert i samme periode. NIBIO som er en viktig leverandør for kunnskap om økologisk landbruk fikk i Statsbudsjettet for 2016 tildelt kunnskapsutviklingsmidler fra Landbruks- og matdepartementet som var øremerka til å "videreutvikle forskningsbasert kunnskap om økologisk landbruk". Arbeidet med å kartlegge status, flaskehalser og kunnskapsbehovet i de ulike produksjonene er basert på en gjennomgang av relevante prosjekter, rapporter og intervjuer med fagpersoner. De foreslåtte temaene for FoU-aktiviteter må anses som veiledende, og er ment som inspirasjon ved utvikling av nye prosjekter innen økologisk landbruk......

Til dokument

Sammendrag

BACKGROUND Broccoli (Brassica oleracea L. var. italica) is a popular vegetable grown at a wide range of latitudes. Plants were grown in 2009–2011 in pots with standardized soil, irrigation and nutrient supply under natural temperature and light conditions at four locations (42–70° N). A descriptive sensory analysis of broccoli florets was performed by a trained panel to examine any differences along the latitudinal gradient for 30 attributes within appearance, odour, taste/flavour and texture. RESULTS Average results over three summer seasons in Germany, southern Norway and northern Norway showed that the northernmost location with low temperatures and long days had highest scores for bud coarseness and uniform colour, while broccoli from the German location, with high temperatures and shorter days, had highest intensity of colour hue, whiteness, bitter taste, cabbage flavour, stale flavour and watery flavour. Results from two autumn seasons at the fourth location (42° N, Spain), with low temperatures and short days, tended toward results from the two northernmost locations, with an exception for most texture attributes. CONCLUSION Results clearly demonstrate that temperature and light conditions related to latitude and season affect the sensory quality of broccoli florets. Results may be used in marketing special quality regional or seasonal products. © 2016 Society of Chemical Industry

Til dokument

Sammendrag

BACKGROUND Plants grown at different latitudes experience differences in light spectral composition. Broccoli (Brassica oleracea L. var italica) plants were grown in climate-controlled chambers under supplemental wavelengths (red, far-red, red + far-red or blue) from light-emitting diodes (LEDs). The light treatments were combined with two cold climate temperatures (12 and 15 °C) during broccoli head formation to investigate the effects on morphology and content of health- and sensory-related compounds: glucosinolates, flavonols, ascorbic acid and soluble sugars. RESULTS Supplemental far-red and red + far-red light led to elongated plants and the lowest total glucosinolate content in broccoli florets. The content of quercetin was highest with supplemental red light. Vitamin C was not significantly affected by the light treatments, but 12 °C gave a higher content than 15 °C. CONCLUSION The effects of supplemental red and far-red light suggest an involvement of phytochromes in the regulation of glucosinolates and flavonols. A shift in red:far-red ratio could cause changes in their content besides altering the morphology. The sugar and vitamin C content appears to be unaffected by these light conditions. Supplemental blue light had little effect on plant morphology and content of the health- and sensory related compounds.

Sammendrag

Smak og ulike kvalitetsdimensjoner hos grønnsaker påvirkes av flere abiotiske vekstfaktorer som lys og temperatur. Disse vekstbetingelsene er særegne i nord på grunn av forholdsvis lave dyrkningstemperaturer og lange dager. I dette prosjektet sees det nærmere på ulike helsegode innholdsstoffer i tillegg til smak i brokkoli for å dokumentere den nordlige kvaliteten.