Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2025
Forfattere
Eva BrodSammendrag
Det er ikke registrert sammendrag
Forfattere
Adam Eindride Naas Trond Simensen Lasse Torben Keetz Ingrid Vesterdal Tjessem Anders Bryn Rune Halvorsen Peter Horvath Ida Marielle Mienna Olav Skarpaas Joachim Paul Töpper Vigdis Vandvik Liv Guri Velle Catharina Caspara VloonSammendrag
Det er ikke registrert sammendrag
Forfattere
Zhibo HamborgSammendrag
Det er ikke registrert sammendrag
Forfattere
Zhibo HamborgSammendrag
Det er ikke registrert sammendrag
Forfattere
Åsgeir R. Almås Susanne Eich-Greatorex Trine Aulstad Sogn Tomasgaard Jan Mulder Manoj Kumar Pandey Vincent Dauby David Powlson Roberta Farina Jeroen Watté Daniel Rasse Nathalie BjørnebySammendrag
The soil organic carbon (SOC) Think Tank has identified and ranked the ten most critical knowledge gaps affecting SOC stocks, based on stakeholder input and iterative validation across multiple events. These prioritized gaps reflect new insights into land use impacts, policy influences, and methodological needs, forming a foundation for targeted research and innovation.
Forfattere
Junbin Zhao Cornelya Klutsch Hanna Marika Silvennoinen Carla Stadler David Kniha Runar Kjær Svein Wara Mikhail MastepanovSammendrag
ABSTRACT Drained cultivated peatlands are recognized as substantial global carbon emission sources, prompting the exploration of water level elevation as a mitigation strategy. However, the efficacy of raised water table level (WTL) in Arctic/subarctic regions, characterized by continuous summer daylight, low temperatures and short growing seasons, remains poorly understood. This study presents a two‐year field experiment conducted at a northernmost cultivated peatland site in Norway. We used sub‐daily CO 2 , CH 4 , and N 2 O fluxes measured by automatic chambers to assess the impact of WTL, fertilization, and biomass harvesting on greenhouse gas (GHG) budgets and carbon balance. Well‐drained plots acted as GHG sources as substantial as those in temperate regions. Maintaining a WTL between −0.5 and −0.25 m effectively reduces CO 2 emissions, without significant CH 4 and N 2 O emissions, and can even result in a net GHG sink. Elevated temperatures, however, were found to increase CO 2 emissions, potentially attenuating the benefits of water level elevation. Notably, high WTL resulted in a greater suppression of maximum photosynthetic CO 2 uptake compared to respiration, and, yet caused lower net CO 2 emissions due to a low light compensation point that lengthens the net CO 2 uptake periods. Furthermore, the long summer photoperiod in the Arctic also enhanced net CO 2 uptake and, thus, the efficacy of CO 2 mitigation. Fertilization primarily enhanced biomass production without substantially affecting CO 2 or CH 4 emissions. Conversely, biomass harvesting led to a significant carbon depletion, even at a high WTL, indicating a risk of land degradation. These results suggest that while elevated WTL can effectively mitigate GHG emissions from cultivated peatlands, careful management of WTL, fertilization, and harvesting is crucial to balance GHG reduction with sustained agricultural productivity and long‐term carbon storage. The observed compatibility of GHG reduction and sustained grass productivity highlights the potential for future paludiculture implementation in the Arctic.
Sammendrag
We assessed soil organic carbon (SOC) stocks and changes across six upland forest sites with 13replicated plots, spanning bioclimatic regions from the boreonemoral to the northern borealzone. The sites included three ICP Forests Level II plots in older coniferous stands and threelong-term experiments focusing on thinning intensity, tree species effects (Norway spruce, Scotspine, silver birch), and mixtures of Norway spruce and downy birch, the latter two followingclear-cutting. Repeated soil surveys spanned 9–34 years. SOC stocks in the organic LFH horizonranged from 1.4 to 3.6 kg m−2, while total stocks down to 30 cm and 70–100 cm mineral soildepths ranged from 3.0 to 13.5 kg m−2 and 8.5 to 17.5 kg m−2, respectively. Annual SOC stockchanges in the LFH horizon ranged from −106 to 111 g m−2 yr−1, with significant changesobserved in five plots. Total SOC stock changes down to 15, 18 or 20 cm mineral soil depthranged from −77 to 154 g m−2 yr−1, with significant increases detected in two ICP level II plots.Sensitivity analyses supported these findings but highlighted inconsistencies in samplingmethods, hight spatial variability, and limited replicates, affecting estimates in the remaining 11plots.ARTICLE HISTORYReceived 31 March 2025Accepted 8 July 2025KEYWORDSBoreal forest; downy birch;Norway spruce; Scots pine;soil organic carbon; SOC;SOC stock changesIntroductionForest ecosystems are crucial biomes for carbon (C)storage, with boreal forests playing a significant role asa C sink (Pan et al. 2011; Watts et al. 2023). Globally,the soil organic carbon (SOC) pool contains more thanthree times as much C as the atmosphere (Schmidt etal. 2011). From a climate perspective, the importanceof SOC storage is tied to its overall size as well as itspotential as a long-term reservoir. Estimates of SOCstocks in boreal upland forests suggest 3–4 times moreC relative to the aboveground tree biomass (Scharle-mann et al. 2014; Bradshaw and Warkentin 2015). Thebiological stability of SOC is mediated by a broad setof environmental drivers, notably temperature and soilmoisture content (Soucémarianadin et al. 2018).Additionally, microbial communities play an importantrole in both decomposition and accumulation of SOC(Lindahl et al. 2021; Gundale et al. 2024), processesthat are further influenced by forest management prac-tices (Mayer et al. 2020; Jörgensen et al. 2022) and treespecies (Mundra et al. 2022, 2024). The effect of treespecies on SOC stocks may primarily influence the distri-bution of SOC within the soil profile rather than the totalSOC stock (Vesterdal et al. 2013; Kjønaas et al. 2021). Thisdistribution, however, affects the stability of SOC and itsvulnerability to decomposition, consequently impactingthe CO2 flux from the soil (James and Harrison 2016;Cotrufo et al. 2019; Georgiou et al. 2024).Estimated C allocation in Norwegian forests is approxi-mately 21% in vegetation and 79% in soil (Grønlund etal. 2010). SOC stocks in Norwegian forest soils are con-sidered higher compared to those of Sweden andFinland (Olsson et al. 2009; Rantakari et al. 2012; Strandet al. 2016). This disparity may partly stem from varyinginventory methods. However, differences in precipitationand temperature gradients account for approximately68% of the variability in SOC stocks across Nordic forests(Callesen et al. 2003), suggesting that climate factors alsoplay a significant role. On a European scale, coniferousforest soils represent one of the largest and most vulner-able SOC stocks (Lugato et al. 2021). The size and stabilityof the SOC stock may determine the magnitude of© 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis GroupThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the AcceptedManuscript in a repository by the author(s) or with their consent.CONTACT O. Janne Kjønaas janne.kjonaas@nibio.noSupplemental data for this article can be accessed online at https://doi.org/10.1080/02827581.2025.2533379.SCANDINAVIAN JOURNAL OF FOREST RESEARCH2025, VOL. 40, NOS. 7–8, 321–356https://doi.org/10.1080/02827581.2025.2533379
Forfattere
Zhibo HamborgSammendrag
Det er ikke registrert sammendrag
Sammendrag
Utmarksbeite er ein viktig ressurs for norsk landbruk, og 48 % av norske driftseiningar slapp dyr i utmark i 2024. Likevel er mykje av ressursen ubrukt – husdyrtalet kan tredoblast utan at beitegrunnlaget blir overskride. Ressursundersøkinga «Arealrekneskap i utmark» gjev ein samla oversikt over utmarksbeiteressursane både nasjonalt og fylkesvis.
Sammendrag
NIBIO har fått i oppdrag av Wessel Eiendom AS å utarbeide en konsekvensutredning for naturresurser i forbindelse med utbygging av boligområde i Indre Østfold kommune. Rapporten inneholder en matjordplan basert på feltundersøkelser. Konsekvensutredningen er basert på kartdata og feltundersøkelser. Rapporten er skrevet etter metode for konsekvensanalyser av Statens Vegvesen håndbok V712. Fagtema jordbruk er en ikke-prissatt konsekvens og konsekvens er vurdert etter metode for verdisetting og påvirkningsgrad. Området med jordbruk satt til å ha stor verdi, det er også vurdert at påvirkningen av tiltaket vil være sterkt forringende. Landbruksforvaltningen i Indre Østfold kommune skal godkjenne matjordplanen. Jordloven §§ 1 og 9 slår fast at ved omdisponering av god matjord bør jordressursene bevares. Rapporten vurderer jordas egenskaper, hydrologiske forhold, fremmede karplanter, planteskadegjørere samt andre forhold av betydning for jordflytting, og gir anbefalinger for bruk og håndtering av massene. Det ble foretatt feltarbeid og befaringer i juni og august 2025. Jordsmonnet er dominert av siltig mellomleire, men har innslag av lettleire og stiv leire. Eiendommen er fri for PCN og er ikke registrert i floghavre-registeret. Ellers ble det funnet kanadagullris, amerikamjølke og fagerfredløs i kanten av det ene skiftet. Kanadagullris må håndteres for å unngå spredning. Det er tilgjengelig til sammen ca. 13 300 m3 matjord og 37 400 m3 B-sjikt-masser til jordflytting fra de to skiftene som er undersøkt. Det er beskrevet to mulige tilflyttingsarealer, begge er befart. Areal 1: arealet er i dag skog og fjell i dagen, hvor det er planlagt utvinning av stein, det skal etableres jordbruksareal etter dette arbeidet avsluttes. Areal 2: arealet er deponi og massesorteringsverk og det skal etableres jordbruksareal etter avsluttet deponivirksomhet. Flytting av masser til areal 1 vil føre til betydelig terrengendring. Flytting av masser til areal 2 vil føre til noe terrengendring. Rapporten gir veiledning for å håndtere belyste kritiske faktorer for å oppnå godt resultat. Oppfølging av entreprenører som utfører arbeidet er nødvendig.