Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2023

Til dokument

Sammendrag

The combination of preharvest treatments with calcium chloride and fungicides, and storage of maturity graded fruit were assessed in five European plum cultivars. At harvest, samples of fruit within a commercially suitable range in ripening were divided into two categories: less-ripe (tree ripe-) and more-ripe (tree ripe+). The fruit were stored for 10–14 days at 4 °C followed by 2–3 days at 20 °C before the assessment of fungal decay. If calcium chloride was applied six times each season, postharvest fruit decay was significantly reduced in four of nine experiments, with a total mean reduction of around 50%. Two calcium applications in combination with a fungicide treatment reduced decay by approx. 60% compared to the untreated in one experiment. In six of seven experiments there was no effect of preharvest fungicide applications. In six of 10 experiments, fruit of the category tree ripe- had fewer fruit with fungal decay after storage than the tree ripe+fruit. The higher incidence in the category tree ripe+fruit was primarily due to brown rot, Mucor rot, and blue mould. For the category tree ripe+, there was two to ten times more decay than on tree ripe- fruit after a simulated shelf-life period. To ensure low incidence of fungal decay, fruit of commercial harvest maturity may thus be separated in two ripening categories, one for rapid distribution to the market (tree ripe+) and another for extended distribution time (tree ripe-).

Til dokument

Sammendrag

Purpose of Review Because tree seeds have been considered a low-risk pathway for the spread of plant pathogenic fungi, their international movement is not subject to strict phytosanitary regulation. However, recent studies have provided scientific evidence that the biosecurity risk of seed trade may not be as negligible as assumed. This review summarises current knowledge about seed trade activity across the world and seed-borne plant pathogenic fungi and highlights knowledge gaps that need to be filled to mitigate the risk of spreading tree pathogens via seeds. Recent Findings Several outbreaks of severe tree diseases in natural forests and plantations worldwide have been linked to fungal pathogens spread by seed trade. Indeed, recent studies based on modern sequencing technologies have shown that tree seeds harbour highly diverse fungal communities, including well-known pathogens and fungal taxa belonging to unknown species. While it has become clear that even apparently healthy seeds can carry potentially pathogenic fungi, the likelihood of seed-borne pathogens being introduced and becoming established, spreading and causing impact in the new environment is still unclear which challenges the assessment of the phytosanitary risk posed by seed trade. Summary Our analyses show that large amounts of tree seeds have been traded among countries and continents. Based on published literature, the risk of spreading pathogenic fungi via tree seed movement is high. However, the role of the taxonomically and functionally diverse fungal communities associated with seeds is still poorly understood. In particular, more research is needed to assess the likelihood of seed-borne fungi being transmitted to the seedlings and spreading and causing impact in the new environment.

Til dokument

Sammendrag

Non-native pests, climate change, and their interactions are likely to alter relationships between trees and tree-associated organisms with consequences for forest health. To understand and predict such changes, factors structuring tree-associated communities need to be determined. Here, we analysed the data consisting of records of insects and fungi collected from dormant twigs from 155 tree species at 51 botanical gardens or arboreta in 32 countries. Generalized dissimilarity models revealed similar relative importance of studied climatic, host-related and geographic factors on differences in tree-associated communities. Mean annual temperature, phylogenetic distance between hosts and geographic distance between locations were the major drivers of dissimilarities. The increasing importance of high temperatures on differences in studied communities indicate that climate change could affect tree-associated organisms directly and indirectly through host range shifts. Insect and fungal communities were more similar between closely related vs. distant hosts suggesting that host range shifts may facilitate the emergence of new pests. Moreover, dissimilarities among tree-associated communities increased with geographic distance indicating that human-mediated transport may serve as a pathway of the introductions of new pests. The results of this study highlight the need to limit the establishment of tree pests and increase the resilience of forest ecosystems to changes in climate.

Til dokument

Sammendrag

Yield maps give farmers information about growth conditions and can be a tool for sitespecific crop management. Combine harvesters may provide farmers with detailed yield maps if there is a constant flow of a certain amount of biomass through the yield sensor. This is unachievable for grass seeds because the weight of the intake is generally too small to record the variation. Therefore, there is a need to find another way to make grass seed yield maps. We studied seed yield variation in two red fescue (Festuca rubra) fields with variation in management and soil fertility, respectively. We estimated five vegetation indices (VI) based on RGB images taken from a drone to describe yield variation, and trained prediction models based on relatively few harvested plots. Only results from the VI showing the strongest correlation between the index and the yield are presented (Normalized Excess Green Index (ExG) and Normalized Green/Red Difference Index (NGRDI)). The study indicates that it is possible to predict the yield variation in a grass field based on relatively few harvested plots, provided the plots represent contrasting yield levels. The prediction errors in yield (RMSE) ranged from 171 kg ha-1 to 231 kg ha-1, with no clear influence of the size of the training data set. Using random selection of plots instead of selecting plots representing contrasting yield levels resulted in slightly better predictions when evaluated on an average of ten random selections. However, using random selection of plots came with a risk of poor predictions due to the occasional lack of correlation between yield and VI. The exact timing of unmanned aerial vehicles (UAVs) image capture showed to be unimportant in the weeks before harvest.