Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2023

Til dokument

Sammendrag

The present research was undertaken to investigate polyphenolic profiles of peel, pulp and juices made from two standard commercial and five traditional apple cultivars from Bosnia and Herzegovina. The main goal of the study was to monitor the distribution and changes of polyphenolic profiles through different phases of apples’ processing into cloudy and clear juices, with regard to L-ascorbic acid pretreatment. Quantitative determination of phenolic compounds was carried out by using high-performance liquid chromatography with diode-array detection. The obtained results showed that traditional cultivars, namely ‘Paradija’ and ‘Prijedorska zelenika’, displayed significantly higher content of these compounds compared to commercial ones. Flavan 3-ols and flavonol glycosides were mostly found in peels of all cultivars (21.2–44.1 and 5.40–33.3%, respectively), while phenolic acids along with flavan 3-ols were predominant in the pulp (8.20–30.8 and 5.10–13.9%, respectively). Apples’ processing into juices caused decrease (more than 90%) in the content of all polyphenols and the distribution of these compounds from fruits to final products had a negative trend, particularly evident in clear juices. The most drastic loss occurred in the flavonol glycosides and dihydrochalcones content, while chlorogenic acid displayed quite stable distribution from apples to final products due to its good solubility. Apple mash pretreatment with L-ascorbic acid had a positive impact on the preservation and retention of polyphenols.

Til dokument

Sammendrag

The aim of this study was to investigate the potential of traditional apple cultivars from Bosnia and Herzegovina to improve the aroma of the less aromatic international cultivar “Idared” in the production of spirits. Two flavor improvement approaches were used: joint fermentation of traditional and “Idared” apples and the maceration of traditional apples in raw “Idared” spirits, followed by redistillation. Minor aroma volatile compounds in the obtained spirits were measured by gas chromatography-mass spectroscopy techniques after enrichment via solid-phase microextraction. Overall, 36 minor volatile compounds were found in spirits. The share of detected compounds varied greatly among samples due to the flavoring approach and used cultivars. Flavor improvement during fermentation proved a more efficient approach. Even 10% share of a traditional apple is enough to improve the positive sensory attributes of the spirits. The obtained results encourage the future use of traditional apple cultivars in the production and flavor improvement of fruit spirits.

Til dokument

Sammendrag

The mineralization of nitrogen in apple orchard soil will increase the soil supply. An incubation study to test the soil potential and the validity of analytical methods was conducted at 3, 8, 15, and 20 °C for up to 128 days on soils from western and south-eastern Norway. Soils with the highest pH showed the highest mineralization. The mineralization increased with increasing temperature and time, but start-up N reduced mineralization. The mineralization cannot be estimated from standard soil chemical parameters because the different C/N ratio indicates organic material of different origin and quality. The increase in NO3-N started very quickly and ranged from 17 to 182% and 12 to 64% after 8 days at 3 °C and 20 °C, respectively. There was no correlation between total N in the soil and the amount of mineralized N. On average, the mineralization increased by 5–7% for a change of 1 °C in the interval from 8 to 15 °C in the soil. The chemical extraction method using heated KCl correlated well with the mineralization data. On average, the chemical method estimated 30 kg N ha−1, which corresponded to 0.48% of total N. Recommendations for N fertilization based on total N in the soil overestimate the contribution of plant-available N in most cases.