Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2024

Til dokument

Sammendrag

The Norwegian Scientific Committee for Food and Environment (VKM) has assessed an application for approval of the genetically modified maize MON 94804 for food and feed uses, import and processing in the EU. In accordance with an assignment specified by the Norwegian Food Safety Authority (NFSA) and the Norwegian Environment Agency (NEA), VKM assesses whether genetically modified organisms (GMOs) intended for the European market can pose risks to human or animal health, or the environment in Norway. VKM assesses the scientific documentation regarding GMO applications seeking approval for use of GMOs as food and feed, processing, or cultivation. The EU Regulation 1829/2003/EC (Regulation) covers living GMOs that fall under the Norwegian Gene Technology Act, as well as processed food and feed from GMOs (dead material) that fall under the Norwegian Food Act. The regulation is currently not part of the EEA agreement or implemented in Norwegian law. Norway conducts its own assessments of GMO applications in preparation for the possible implementation of the Regulation. In accordance with the assignment by NFSA and NEA, VKM assesses GMO applications during scientific hearings initiated by the European Food Safety Authority (EFSA), as well as after EFSA has published its own risk assessment of a GMO, up until EU member countries vote for or against approval in the EU Commission. The assignment is divided into three stages. (link) Maize MON 94804 MON 94804 is a genetically modified maize developed via Agrobacterium tumefaciens -mediated transformation of maize cells. Maize MON 94804 expresses a micro-RNA (miRNA) transcript, that leads to reduced levels of the hormone gibberellin in the plant. Gibberellin is involved in, i.a., plant stem elongation. Thus, maize MON 94804 plants grow shorter than other maize. The scientific documentation provided in the application for maize MON 94804 is adequate for risk assessment, and in accordance with EFSA guidance on risk assessment of genetically modified plants for use in food or feed. The VKM GMO panel does not consider the introduced modifications in maize MON 94804 to imply potential specific health or environmental risks in Norway, compared to EU-countries. The EFSA scientific Opinion is adequate also for Norwegian conditions. Therefore, a full risk assessment of maize MON 94804 was not performed by the VKM GMO Panel.

Sammendrag

The Norwegian Committee for Food and Environment (VKM) has performed a preliminary assessment of an application for authorization for the genetically modified maize event DP202216 in the EAA. The scope of the application includes all uses of maize DP202216 and sub-combinations independently of their origin equivalent to the uses of any other maize grain and forage. The assessment was performed in connection with EFSAs (European Food Safety Authorities) public hearing of application EFSA-GMO-NL-2019-159, on request from the Norwegian Food Safety Authority and the Norwegian Environment Agency. The assessment of maize DP202216 is based on information provided by the applicant in the application EFSA-GMO-NL-2019-159, and relevant peer-reviewed scientific literature. Maize DP202216 has the potential to enhanced grain yield, and provides tolerance to glufosinate-ammonium herbicides. Authorisation process for genetically modified organisms Through the EEA Agreement, the EU Directive 2001/18/EC on deliberate release into the environment of genetically modified organisms is implemented in Norwegian law. Norway is therefore affiliated with the GMO authorisation process in the EU. In the EU, both GMOs and derived products are regulated by the Directive and Regulation 1829/2003/EC. The Regulation concerns genetically modified food and feed and is currently not a part of the EEA Agreement. In preparation for a legal implementation of the Regulation in Norwegian law, Norway follows the EU proceedings for GMO applications. When a company seeks approval of a genetically modified organism, the application is submitted to the national competent authority of an EU Member State, which forwards the application to EFSA. EFSA then submits the application for a public hearing across all EEA countries. VKM conducts its own review of the application and sends its comments to EFSA. EFSA then completes their scientific opinion based on information from the applicant, comments from EEA member countries and independent literature. The scientific opinion is then issued to the European Commission. VKM submitted their comments on application EFSA-GMO-NL-2019-159 to EFSA before the deadline January 3, 2020.

Til dokument

Sammendrag

The Norwegian Scientific Committee for Food and Environment (VKM) has assessed an application for approval of the genetically modified maize DP915635 for food and feed uses, import and processing in the EU. In accordance with an assignment specified by the Norwegian Food Safety Authority (NFSA) and the Norwegian Environment Agency (NEA), VKM assesses whether genetically modified organisms (GMOs) intended for the European market can pose risks to human or animal health, or the environment in Norway. VKM assesses the scientific documentation regarding GMO applications seeking approval for use of GMOs as food and feed, processing, or cultivation. The EU Regulation 1829/2003/EC (Regulation) covers living GMOs that fall under the Norwegian Gene Technology Act, as well as processed food and feed from GMOs (dead material) that fall under the Norwegian Food Act. The regulation is currently not part of the EEA agreement or implemented in Norwegian law. Norway conducts its own assessments of GMO applications in preparation for the possible implementation of the Regulation. In accordance with the assignment by NFSA and NEA, VKM assesses GMO applications during scientific hearings initiated by the European Food Safety Authority (EFSA), as well as after EFSA has published its own risk assessment of a GMO, up until EU member countries vote for or against approval in the EU Commission. The assignment is divided into three stages. (link) Maize DP915635 DP915635 is a genetically modified maize that expresses the insecticidal protein IPD079Ea for control of corn rootworm pests, the enzyme phosphinothricin acetyltransferase (PAT) for tolerance to glufosinate-ammonium herbicides, and the enzyme phosphomannose isomerase (PMI) that was used as a selectable marker during development. The scientific documentation provided in the application for DP915635 maize is adequate for risk assessment, and in accordance with EFSA guidance on risk assessment of genetically modified plants for use in food or feed. The VKM GMO panel does not consider the introduced modifications in DP915635 maize to imply potential specific health or environmental risks in Norway, compared to EU-countries. The EFSA scientific Opinion is adequate also for Norwegian conditions. Therefore, a full risk assessment of DP915635 maize was not performed by the VKM GMO Panel. About the assignment: In stage 1, VKM shall assess the health and environmental risks of the genetically modified organism and derived products in connection with the EFSA scientific hearing of GMO applications. VKM shall review the scientific documentation that the applicant has submitted and possibly provide comments to EFSA. VKM must also consider: i) whether there are specific Norwegian conditions that could give other risks in Norway than those mentioned in the application, ii) whether the Norwegian diet presents a different health risk for the Norwegian population should the GMO be approved, compared to the European population, and iii) risks associated with co-existence with conventional and/or ecologic production of plants for GMOs seeking approval for cultivation. Relevant measures to ensure co-existence must also be considered. In stage 2, VKM shall assess whether comments from Norway have been satisfactorily answered by EFSA. In addition, VKM shall assess whether comments from other countries imply need for further follow-up. If EFSAs response to Norwegian comments is not satisfactory, or comments by other countries imply the need for further follow-up, VKM shall in stage 3 perform a risk assessment of these conditions, including conditions specific to Norway.

Sammendrag

Import of leeches for medical use and hobby keeping poses a low risk of negative effects on Norwegian biodiversity. This is the key message in a risk assessment of two species of blood-sucking leeches conducted by VKM for the Norwegian Environment Agency. Background The two species of leeches (Hirudo medicinalis and H. verbana) have in recent years become more commonly used in Western medicine for various procedures where maintaining good blood flow is important. Hirudo medicinalis is considered native to Norway and is found in scattered populations in southern Norway. There is uncertainty about the genetic impact on these populations if imported leeches were to be released into the wild. Hirudo verbana is not registered in Norway but may have been imported as H. medicinalis in the past. Both species are listed under Appendix I, List B of the Norwegian CITES regulations. Methods VKM reviewed scientific literature to uncover potential negative effects in light of the leeches’ ecology under Norwegian conditions. VKM also investigated how the trade in live leeches is conducted, where they originate from, and outlined possible risk-reducing measures. VKM assessed four factors of potential relevance for negative impacts on biodiversity and conducted risk assessments for each: Hybridisation or other negative genetic impacts on local populations Competition with other leech species Parasitism or predation on amphibian populations Transmission of diseases Additionally, VKM assessed the extent of such imports and the likelihood of imported leeches ending up in Norwegian nature. Results VKM concluded that it is moderately likely that H. medicinalis will genetically affect Norwegian populations, but this will have minimal negative effects. Hybridisation between H. verbana and H. medicinalis is considered unlikely and would have little effect if it occurs. ”The leeches already present in Norway mainly originate from leeches imported from Europe in the 1800s. The introduction of new genes from the same areas now will therefore have minimal impact. The risk is therefore low,” says Lawrence Kirkendall, the scientific leader of the work. For parasitism or predation, amphibians are the main species that could theoretically be negatively affected by the leeches. VKM concludes that such negative effects are very unlikely and would have little or minimal impact. This implies low risk. Regarding competition and disease transmission, VKM assesses that these factors have little or minimal effect on biodiversity and are very unlikely. "We assess that the effects on biodiversity in Norway, if imported leeches were to end up in an environment where they thrive, are very small. At the same time, it is very unlikely that leeches used for medical procedures will end up in nature. The overall assessment is therefore that both species are associated with low risk of negative impact on biodiversity," says Kirkendall. The risk assessment is approved by the VKM Panel for Biodiversity.

Til dokument

Sammendrag

Climate change threatens the role of European forests as a long-term carbon sink. Assisted migration aims to increase the resilience of forest tree populations to climate change, using species-specific climatic limits and local adaptations through transferring seed provenances. We modelled assisted migration scenarios for seven main European tree species and analysed the effects of species and seed provenance selection, accounting for environmental and genetic variations, on the annual above-ground carbon sink of regrowing juvenile forests. To increase forest resilience, coniferous trees need to be replaced by deciduous species over large parts of their distribution. If local seed provenances are used, this would result in a decrease of the current carbon sink (40 TgC yr−1) by 34–41% by 2061–2080. However, if seed provenances adapted to future climates are used, current sinks could be maintained or even increased to 48–60 TgC yr−1.

Til dokument

Sammendrag

Detailed forest inventories are critical for sustainable and flexible management of forest resources, to conserve various ecosystem services. Modern airborne laser scanners deliver high-density point clouds with great potential for fine-scale forest inventory and analysis, but automatically partitioning those point clouds into meaningful entities like individual trees or tree components remains a challenge. The present study aims to fill this gap and introduces a deep learning framework, termed ForAINet, that is able to perform such a segmentation across diverse forest types and geographic regions. From the segmented data, we then derive relevant biophysical parameters of individual trees as well as stands. The system has been tested on FOR-Instance, a dataset of point clouds that have been acquired in five different countries using surveying drones. The segmentation back-end achieves over 85% F-score for individual trees, respectively over 73% mean IoU across five semantic categories: ground, low vegetation, stems, live branches and dead branches. Building on the segmentation results our pipeline then densely calculates biophysical features of each individual tree (height, crown diameter, crown volume, DBH, and location) and properties per stand (digital terrain model and stand density). Especially crown-related features are in most cases retrieved with high accuracy, whereas the estimates for DBH and location are less reliable, due to the airborne scanning setup.