Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2021

Til dokument

Sammendrag

Plant virus eradication is a prerequisite for the use of virus-free propagules for sustainable crop production. In contrast, virus preservation is required for all types of applied and basic research of viruses. Shoot tip cryopreservation can act as a double-edged strategy, facilitating either virus eradication or virus preservation in cryoderived plants. Here, we tested the efficacies of shoot tip cryopreservation for virus eradication and preservation in shallot (Allium cepa var. aggregatum). In vitro stock shallot shoots infected with onion yellow dwarf virus (OYDV) and shallot latent virus were thermotreated for 0, 2, and 4 weeks at a constant temperature of 36℃ before shoot tip cryopreservation. Results showed that viruses were preserved in recovered shoots when thermotherapy was not applied. Although thermotherapy lowered the regrowth levels of cryotreated shoot tips, the efficiency of virus eradication increased from 5% to 54%. Immunolocalization of OYDV and histological observation of cryotreated shoot tips showed the high frequency of virus preservation was due to the viral invasion of cells close to the apical meristem and the high proportion of cells surviving. Four weeks of thermotherapy drastically decreased the distribution of OYDV, as well as the percentage of surviving cells within the shoot tips, thereby promoting virus eradication. Virus-free plants obtained from combining thermotherapy with cryotherapy showed significantly improved vegetative growth and bulb production. The present study reports how thermotherapy can act as a trigger to facilitate either the safe preservation of Allium viruses or the production of virus-free shallot plants.

Til dokument

Sammendrag

With large area of primary tropical rainforest converted into rubber (Hevea brasiliensis) plantation in Southeast Asia, it is necessary to examine the change in soil CO2 and CH4 emissions, and their underlying drivers in tropical rainforest (TRF) and rubber plantation. In TRF and RP in Xishuangbanna Southwest China, we measured the soil CO2 , CH4 , temperature, and water content once each week from 2003 to 2008, and twice weeks in 2013 and 2014. Additionally, the concentrations of soil carbon (C) and nitrogen (N) fractions from 2013 to 2014 were observed. Inputs of litter and live, dead, decomposed fine roots dynamics were also included. TRF transplanted to RP did not change significantly the annual soil CO2 emissions (TRF, 359 ± 91 and RP 352 ± 41 mg CO2 m−2 h−1) but decreased soil CH4 uptake significantly (TRF, −0.11 ± 0.18 mg CH4 m−2 h−1) RP, −0.020 ± 0.087 mg CH4 m−2 h−1). The most important influence on soil CO2 and CH4 emissions in the RP was the leaf area index and soil water content, respectively, whereas the soil water content, soil temperature, and dead fine roots were the most important factors in the TRF. Variations in the soil CO2 and CH4 caused by land-use transition were individually explained by soil temperature and fine root growth and decomposition, respectively. The results show that land-use change varied the soil CH4 and CO2 emission dynamics and drivers by the variation of soil environmental and plant's factors.

Til datasett

Sammendrag

Hvis du ikke er avhengig av å ha plen på hytta, så anlegg en blomstereng. Det er rådet fra Norsk institutt for bioøkonomi (NIBIO). De mener hyttefolket har et felles ansvar for å ivareta naturmangfoldet i hyttefelt.

Til dokument

Sammendrag

Many herbaceous perennial plant species gain significant competitive advantages from their underground creeping storage and proliferation organs (CR), making them more likely to become successful weeds or invasive plants. To develop efficient control methods against such invasive or weedy creeping perennial plants, it is necessary to identify when the dry weight minimum of their CR (CR DWmin) occurs. Moreover, it is of interest to determine how the timing of CR DWmin differs in species with different light requirements at different light levels. The CR DWmin of Aegopodium podagraria, Elymus repens and Sonchus arvensis were studied in climate chambers under two light levels (100 and 250 μmol m−2 s−1), and Reynoutria japonica, R. sachaliensis and R. × bohemica under one light level (250 μmol m−2 s−1). Under 250 μmol m−2 s−1, the CR DWmin occurred before one fully developed leaf in R. sachaliensis, around 1–2 leaves in A. podagraria and E. repens and around four leaves in S. arvensis, R. japonica and R. × bohemica. In addition to reducing growth in all species, less light resulted in a higher shoot mass fraction in E. repens and S. arvensis, but not A. podagraria; and it delayed the CR DWmin in E. repens, but not S. arvensis. Only 65% of planted A. podagragra rhizomes produced shoots. Beyond the CR DWmin, Reynoutria spp. reinvested in their old CR, while the other species primarily produced new CR. We conclude that A. podagraria, R. sachaliensis and E. repens are vulnerable to control efforts at an earlier developmental stage than S. arvensis, R. japonica and R. × bohemica.