Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2025

Til dokument

Sammendrag

Chocolate spot (CS), caused by Botrytis fabae, is one of the most destructive fungaldiseases affecting faba bean (Vicia faba L.) globally. This study evaluated 33 fababean cultivars across two locations and over 2 years to assess genetic resistance andthe effect of fungicide application on CS progression. The utility of unmanned aerialvehicle–mounted multispectral camera for disease monitoring was examined. Signif-icant variability was observed in cultivar susceptibility, with Bolivia exhibiting thehighest level of resistance and Louhi, Sampo, Vire, Merlin, Mistral, and GL Sunriseproving highly susceptible. Fungicide application significantly reduced CS severityand improved yield. Analysis of canopy spectral signatures revealed the near-infraredand red edge bands, along with enhanced vegetation index (EVI) and soil adjustedvegetation index, as most sensitive to CS infection, and they had a strong negativecorrelation with CS severity ranging from −0.51 to −0.71. In addition, EVI enabledearly disease detection in the field. Support vector machine accurately classified CSseverity into four classes (resistant, moderately resistant, moderately susceptible, andsusceptible) based on spectral data with higher accuracy after the onset of diseasecompared to later in the season (accuracy 0.75–0.90). This research underscores thevalue of integrating resistant germplasm, sound agronomic practices, and spectralmonitoring for effectively identification and managing CS disease in faba bean

Sammendrag

Data from the Norwegian national forest inventory spanning from 1994 to 2022 were analyzed to explore the growth dynamics of pure and mixed stands of Norway spruce and Scots pine. The derived large dataset enabled the development of models designed to assess how stand characteristics and drought interactively affect volume increment at the stand and individual tree level. The analysis revealed that pine-dominated stands outperform spruce-dominated stands at lower site qualities, while the opposite was true at higher site qualities. Mixed stands exhibited overyielding, with productivity exceeding the expected combined pure stand productivity of the individual species components. Based on model predictions, relative overyielding increased with stand age and declined with increasing site quality. Transgressive overyielding, where mixed stands outperform pure stands of either species, was predicted for medium site qualities. Drought-induced productivity losses increased with spruce proportion, especially at lower site qualities, and with stand density. The presence of pine in mixed stands mitigated the negative effects of drought on spruce. The findings of this study suggest that pure spruce stands should be avoided on lower-quality sites while mixed stands with appropriate thinning interventions should be promoted to maintain productivity under changing climatic conditions.

Til dokument

Sammendrag

Det er ikke registrert sammendrag