Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2018
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Gransnutebillen og granbarkbillen tar livet av mange små granplanter før de blir juletrær. Giftsprøyting ble forbudt i år. Nå kan en «vaksine» bli løsningen.
Forfattere
Tuomas Toivanen Olli-Pekka Smolander Carl Gunnar Fossdal Paal Krokene Lars Paulin Petri Auvinen Etienne Bucher Timo HytönenSammendrag
Det er ikke registrert sammendrag
Forfattere
Arne Stensvand Aruppillai Suthaparan Belachew Asalf Tadesse Rodrigo B. Onofre Pål Johan From Natalia A. Peres W. Turechek Andrew Bierman Mark Rea David M. GadourySammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Björn Ringselle Therese With Berge Daniel Stout Tor Arvid Breland Paul E. Hatcher Espen Haugland Matthias Koesling Kjell Mangerud Tor Lunnan Lars Olav BrandsæterSammendrag
Docks (Rumex spp.) are a considerable problem in grassland production worldwide. We investigated how different cultural management techniques affected dock populations during grassland renewal: (I) renewal time, (II) companion crop, (III) false seedbed, (IV) taproot cutting (V), plough skimmer and (VI) ploughing depth. Three factorial split-split plot experiments were carried out in Norway in 2007–2008 (three locations), 2008–2009 (one location) and 2009 (one location). After grassland renewal, more dock plants emerged from seeds than from roots. Summer renewal resulted in more dock seed and root plants than spring renewal. Adding a spring barley companion crop to the grassland crop often reduced dock density and biomass. A false seedbed resulted in 71% fewer dock seed plants following summer renewal, but tended to increase the number of dock plants after spring renewal. In some instances, taproot cutting resulted in less dock biomass, but the effect was weak and inconsistent, and if ploughing was shallow (16 cm) or omitted, it instead increased dock root plant emergence. Fewer root plants emerged after deep ploughing (24 cm) compared to shallow ploughing, and a plough skimmer tended to reduce the number further. We conclude that a competitive companion crop can assist in controlling both dock seed and root plants, but it is more important that the renewal time is favourable to the main crop. Taproot cutting in conjunction with ploughing is not an effective way to reduce dock root plants, but ploughing is more effective if it is deep and a skimmer is used.
Forfattere
Marte Persdatter TangvikSammendrag
Free-living plant-parasitic nematodes (PPN), including migratory endoparasites such as Pratylenchus spp., cause yield reduction in agriculture and horticulture world-wide. In Norway, nematicides are banned due to their adverse effect on human health and the environment. Thus, management of plant-parasitic nematodes rely on cultural practices, such as crop rotation. Free-living PPN tend to have broad host-ranges, which complicates the design of effective crop rotations. Information on the reproductive rate and damage potential of nematode species on different crops is of crucial importance when designing a successful crop rotation. Results from several experiments indicate that in order to reduce the numbers of free-living PPN, the sequence of crops is more important than the length of the rotation. The crop rotation should aim at protecting the most economically valuable crop. An oat (Avena sativa) field in Norway was heavily infested with Tylenchorhynchus dubius (1200 ind/250 ml soil) and a low population of Pratylenchus crenatus (10 ind/250 ml soil). The primary goal was to reduce T. dubius by growing turnip rape (Brassica rapa ssp. oleifera), with carrot as the following crop. T. dubius was reduced with 77-85% after turnip rape. In contrast, the population of P. crenatus increased by more than tenfold. The increased numbers of P. crenatus could be damaging to the carrot crop. This illustrates that crop rotation should be a long-term strategy, with carefully designed rotations to protect the most economically valuable crop (e.g. carrot). This also illustrates the challenges of designing a crop rotation that effectively reduces multiple nematode populations. In a started project, we will use photography with Unmanned Aerial Vehicles and transects to monitor nematode populations and damage in several fields throughout the growing season, and over several seasons. These fields will serve as naturally occurring experiments. We want to develop decision-making tools for nematode management in Norway.
Forfattere
Isabella Børja Kjell Andreassen Jan Čermák Lise Dalsgaard Arthur Gessler Douglas Lawrence Godbold Rainer Hentschel Zachary E. Kayler Paal Krokene Nadezhda Nadezhdina Sabine Rosner Halvor Solheim Jan Svetlik Mari Mette Tollefsrud Ole Einar TveitoSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag