Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2024

Til dokument

Sammendrag

Phylogenomic approaches have recently helped elucidate various insect relationships, but large-scale comprehensive analyses on relationships within sawflies and woodwasps are still lacking. Here, we infer the relationships and long-term biogeographic history of these hymenopteran groups using a large dataset of 354 UCE loci collected from 385 species that represent all major lineages. Early Hymenoptera started diversifying during the Early Triassic ∼249 Ma and spread all over the ancient supercontinent Pangaea. We recovered Xyeloidea as a monophyletic sister group to other Hymenoptera and Pamphilioidea as sister to Unicalcarida. Within the diverse family Tenthredinidae, our taxonomically and geographically expanded taxon sampling highlights the non-monophyly of several traditionally defined subfamilies. In addition, the recent removal of Athalia and related genera from the Tenthredinidae into the separate family Athaliidae is supported. The deep historical biogeography of the group is characterised by independent dispersals and re-colonisations between the northern (Laurasia) and southern (Gondwana) palaeocontinents. The breakup of these landmasses led to ancient vicariance in several Gondwanan lineages, while interchange across the Northern Hemisphere has continued until the Recent. The little-studied African sawfly fauna is likewise a diverse mixture of groups with varying routes of colonization. Our results reveal interesting parallels in the evolution and biogeography of early hymenopterans and other ancient insect groups.

Til dokument

Sammendrag

A well-defined methodology for constructing appropriate atomistic representations of biochar will aid in visualizing the structural features and elucidating biochar behavior with molecular dynamics (MD) simulations. Such knowledge will facilitate engineering biochars tailored to specific applications. To achieve this goal, we adapted modeling strategies applied in coal science by employing multi-cross-polarization 13C nuclear magnetic resonance, ultimate analysis, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy to identify functional groups. Helium density, surface area, and porosity were used to assess structural features. Biochar's aromatic cluster size distribution was proposed based on data from the benzene polycarboxylic acid method. The computational framework reduces bias by incorporating chemical information derived from density functional theory, reactive MD simulations, and advanced characterization data. The construction approach was successfully applied to cellulose biochars produced at four temperatures, obtaining independent representations with a relative error on the atomic contents of <10 % for oxygen and nitrogen and <5 % for carbon and hydrogen. The atomistic representations were validated using X-ray diffraction, electron spin resonance data, and laser desorption/ionization Fourier-transform ion cyclotron resonance-mass spectrometry. The code will assist others in overcoming structural creation barriers and enable the utilization of the generated structures for further simulations.

Til dokument

Sammendrag

One of the major challenges facing agricultural and food systems today is the loss of agrobiodiversity. Considering the current impasse of preventing the worldwide loss of crop diversity, this paper highlights the possibility for a radical reorientation of current legal seed frameworks that could provide more space for alternative seed systems to evolve which centre on norms that support on-farm agrobiodiversity. Understanding the underlying norms that shape seed commons are important, since norms both delimit and contribute to what ultimately will constitute the seeds and who will ultimately have access to the seeds and thus to the extent to which agrobiodiversity is upheld and supported. This paper applies a commoning approach to explore the underpinning norms of a Swedish seed commons initiative and discusses the potential for furthering agrobiodiversity in the context of wider legal and authoritative discourses on seed enclosure. The paper shows how the seed commoning system is shaped and protected by a particular set of farming norms, which allows for sharing seeds among those who adhere to the norms but excludes those who will not. The paper further illustrates how farmers have been able to navigate fragile legal and economic pathways to collectively organize around landrace seeds, which function as an epistemic farming community, that maintain landraces from the past and shape new landraces for the present, adapted to diverse agro-ecological environments for low-input agriculture. The paper reveals how the ascribed norms to the seed commons in combination with the current seed laws set a certain limit to the extent to which agrobiodiversity is upheld and supported and discusses why prescriptions of “getting institutions right” for seed governance are difficult at best, when considering the shifting socio-nature of seeds. To further increase agrobiodiversity, the paper suggests future seed laws are redirected to the sustenance of a proliferation of protected seed commoning systems that can supply locally adapted plant material for diverse groups of farmers and farming systems.

Sammendrag

Timothy ( Phleum pratense L.) is the predominant forage grass species in the northern parts of the Nordic region. Because of the long andharsh winters and a short growing season, most of it with continuous light, the need for locally adapted timothy seed has been recognizedfor more than a century. However, the seed production of timothy in these marginal environments is unpredictable with acceptable seedyield and quality on average only every third year. Thus, a multiplication scheme for the northern cultivars was established with only pre-basic seed produced in the north, and basic and certified seed produced further south to secure enough seed of good quality. In recentdecades this scheme has been more or less abandoned with continous generations produced in the south. Farmers are complaining andare questioning whether the cultivars has changed and lost winter hardiness. We studied freezing and ice-encasement tolerance of generations of the the northern timothy cultivars ‘Engmo’ (old landrace) and ‘Noreng’(synthetic) multiplied for one, two or three generations in Central, Southern and Northern Norway. The trials introduce very largedifferences in mean temperature, growing degree days and photoperiod between place of parental origin and sites of multiplication so theeffects on fitness observed could arise from both selection and and induced epigenetic changes. Large changes (loss) in freezing and ice-encasement tolerance were observed, especially at the southern location in the first generation.The cultivars behaved differently and there were significant interactions. The extreme phenotypic changes observed might be explained bygenetic selection or epigenetic memory of the environmental conditions experienced during seed production, or a combination of the two.We are currently analysing GBS data of all generations and this will be used to test whether genetic shifts has occured during themultiplication in the different environments.

Sammendrag

Hurdal (NO-Hur) is a recently labelled ICOS class 2 station in Southeast Norway. It represents a typical southern boreal forest of medium productivity, dominated by old Norway spruce (average tree height: 25 m, ages: up to 100 years) with some pine and broadleaved trees. The eddy covariance technique is used to measure CO2 fluxes on a 42 m tower since 2021 . The measurements have an average footprint area of approximately 63 ha. In 2023, the region experienced an unusual dry spring and then an extraordinary flood in August. Both events showed significant impact on the Net Ecosystem Exchange (NEE) and heat fluxes. The station is also equipped with automatic dendrometers and sap flow devices on the dominant spruce trees, allowing us to investigate the impact of these events at the individual tree scale. We will present tree growth and transpiration flux at different temporal scales (from sub-daily to seasonal), and relate these single tree observations with environmental variables, ecosystem-level NEE and evapotranspiration using phase synchronization analysis. These observational data will yield insights into carbon and water processes of a boreal forest at different scales in response to multiple disturbances.