Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2023

Sammendrag

The resilience of global food security is a critical concern. Facing limited access to land and potential disruption of the food markets, alternative, scalable, and efficient production systems are needed as a complementary buffer for maintenance of food production integrity. The purpose of this study was to introduce an alternative hydroponic potato growing system where potatoes are grown in bare wood fiber as a growing medium. A system utilizing drip irrigation and plastic bags as containers was tested for three different types of wood fiber, two cultivars and two fertigation strategies. Implementation of the system resulted in ~300% higher tuber production when compared to the local conventional farming. Mineral composition of the tubers obtained from hydroponic system was similar to the composition of tubers grown in the field and revealed potential for biofortification. In addition, a fertigation strategy where the two application points were separated across the root zone resulted in tubers with dry matter content comparable to the potatoes grown in soil. The recyclability, reusability, and simplicity of this solution may encourage its application for improving security of food production in selected areas of the world as well as its utilization in urban agriculture.

Sammendrag

Cultivation of strawberries in greenhouses and polytunnels is increasing, and new sustainable growing media are needed to replace peat and coconut coir. This study investigated the effect of wood fiber and compost as growing media on hydroponically cultivated strawberries. Two experiments were conducted, where the everbearing cultivar ‘Murano’ was grown in mixtures of wood fiber and compost (Experiment 1) and the seasonal flowering cultivar ‘Malling Centenary’ was grown in mixtures of wood fiber and peat (Experiment 2). Additionally, in Experiment 2, the effect of adding start fertilizer was assessed. The yield potential of ‘Murano’ plants was maintained in all substrates compared to the coconut coir control. However, a mixture of 75% wood fiber and 25% compost produced the highest yield, suggesting that mixtures of nutritious materials with wood fiber may improve plant performance. The chemical composition of the berries was not affected by the substrate composition; however, berries from plants grown in the best performing blend had a lower firmness than those grown in coconut coir. ‘Malling Centenary’ plants produced higher yields in substrates enriched with start fertilizer. Generally, the productivity of ‘Malling Centenary’ plants was maintained in blends containing up to 75% of wood fiber mixture even without start fertilizer.

Sammendrag

This report shows results from an experiment where it was investigated whether a powder of freeze-dried microalgae (Phaeodactylum tricornutum) had a biostimulating effect on the growth and content of nutrients and antioxidants in basil (Ocimum basilicum). The effect of the microalgae powder was tested as a supplement to either mineral fertilizer or a commercial organic fertilizer. We found no significant effect on the yield of applied microalgae powder, but there was a tendency for a higher yield with added microalgae powder for the treatment with organic fertiliser. This may be due to additional nitrogen supply with the microalgae powder. With mineral fertiliser, there was the opposite tendency, highest yield without microalgae powder. The only statistically significant effect of the microalgae powder was an increase in the concentration of boron for the treatment with organic fertiliser. This was probably an effect of a significant additional supply of boron with the microalgae biomass. There was a tendency for an increased concentration of copper with the addition of microalgae powder with both mineral and organic fertiliser, although the additional copper supply with the microalgae powder was small. With organic fertiliser, there was also a tendency towards increased phosphorus and potassium concentrations with the addition of microalgae powder. This could be a biostimulating effect as the additional phosphorus and potassium supply with the microalgae powder was small, but as mentioned, the effect was not statistically significant. We found no significant differences between the treatments for total antioxidant content.