Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2023

Sammendrag

The fungus Neonectria ditissima causes Fruit Tree Canker on apple and pear. In the past years the disease has become a threat for Swedish and Northern European apple production since devastating outbreaks destroy large numbers of trees. To date, no complete genetic resistance to N. ditissima is known in apple but genotypes (scion cultivars and rootstocks) differ greatly in their level of partial resistance. Furthermore, the degree of susceptibility of a scion cultivar may be influenced by the rootstock it is grafted to. Thus, we aimed to improve our understanding of genetically determined differences in resistance among rootstocks and clarify cultivar/rootstock interactions with regards to canker resistance. For that, we evaluated differences in resistance to fruit tree canker in 24 rootstocks (including two M9 clones). We also evaluated differences in resistance of four most widely grown in Sweden scion cultivars grafted to four common rootstocks differing in vigour. The new knowledge will be useful for growers and breeders to minimize canker damages, prevent loss of the fruit-bearing surface in the orchards, save time and money for the growers.

Til dokument

Sammendrag

Aquaculture of the lumpfish (Cyclopterus lumpus L.) has become a large, lucrative industry owing to the escalating demand for “cleaner fish” to minimise sea lice infestations in Atlantic salmon mariculture farms. We used over 10K genome-wide single nucleotide polymorphisms (SNPs) to investigate the spatial patterns of genomic variation in the lumpfish along the coast of Norway and across the North Atlantic. Moreover, we applied three genome scans for outliers and two genotype–environment association tests to assess the signatures and patterns of local adaptation under extensive gene flow. With our ‘global’ sampling regime, we found two major genetic groups of lumpfish, i.e., the western and eastern Atlantic. Regionally in Norway, we found marginal evidence of population structure, where the population genomic analysis revealed a small portion of individuals with a different genetic ancestry. Nevertheless, we found strong support for local adaption under high gene flow in the Norwegian lumpfish and identified over 380 high-confidence environment-associated loci linked to gene sets with a key role in biological processes associated with environmental pressures and embryonic development. Our results bridge population genetic/genomics studies with seascape genomics studies and will facilitate genome-enabled monitoring of the genetic impacts of escapees and allow for genetic-informed broodstock selection and management in Norway.