Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2024

Til dokument

Sammendrag

Common scab (CS) is a major bacterial disease causing lesions on potato tubers, degrading their appearance and reducing their market value. To accurately grade scab-infected potato tubers, this study introduces “ScabyNet”, an image processing approach combining color-morphology analysis with deep learning techniques. ScabyNet estimates tuber quality traits and accurately detects and quantifies CS severity levels from color images. It is presented as a standalone application with a graphical user interface comprising two main modules. One module identifies and separates tubers on images and estimates quality-related morphological features. In addition, it enables the extraction of tubers as standard tiles for the deep-learning module. The deep-learning module detects and quantifies the scab infection into five severity classes related to the relative infected area. The analysis was performed on a dataset of 7154 images of individual tiles collected from field and glasshouse experiments. Combining the two modules yields essential parameters for quality and disease inspection. The first module simplifies imaging by replacing the region proposal step of instance segmentation networks. Furthermore, the approach is an operational tool for an affordable phenotyping system that selects scab-resistant genotypes while maintaining their market standards.

Til dokument

Sammendrag

Agricultural sustainability is threatened by both water deficit and water excess, especially at the presence of extreme meteorological events resulting from climate change. However, there has been lack of demonstrations on management options with long-term values for agricultural adaptation to runoff. Using 20 years of monitoring data (1993–2012) for two experimental fields in the Canadian Prairies as a case study, we quantified the effects of rainfall characteristics, crop type and biomass, and tillage on growing-season runoff generation using regression analyses and thereafter scenario comparisons. With growing-season gross rainfall ranging between 183 and 456 mm, runoff responses varied between 0 and 59 mm. Over the 20-year study period, 70%–74 % of the growing season runoff was generated by rainfall events >100 mm. Compared to high-intensity tillage, long-term conservation tillage reduced both overall runoff and runoff in large events likely by improving water infiltration. Under both tillage methods, growing-season runoff significantly increased with increasing rainfall but decreased with increasing biomass (R2 range: 0.40–0.58; p range: 0.0007–0.02). At the event level, the rainfall-runoff relationship followed a piecewise regression model (Cd ¼ 0.82; p

Til dokument

Sammendrag

Grønnsaker har hatt en økende omsetning senere år, men kålvekster har ikke hatt samme økning. Prosjektets kompetanseløft skal bidra til økt verdiskaping av norske kålvekster gjennom å etablere og å formidle kunnskap om variasjoner i smaks-, lukt-, og helserelatert kvalitet hos hodekål, blomkål og ulike typer bladkål. Det ble gjennomført feltforsøk med både velkjente og uprøvde kålsorter, og sorter med ulike egenskaper og mulige bruksområder. Det ble funnet store variasjoner i sensoriske egenskaper og helserelaterte innholdsstoffer for hodekål- og bladkål-sortene, mens de hvite blomkålsortene hadde relativt like egenskaper. Spesielt innen hodekål og bladkål var det sorter som spente fra milde til smaksintense, og fra lite til mye aromastoffer. Innholdet av helserelaterte innholdsstoffer var generelt høyere i de smaksintense sortene. Anbefalingen fra prosjektet er å utnytte sortsmangfoldet til økt produktdifferensiering i markedet gjennom å tilby ulike typer og sorter kålvekster til ulike bruksområder. Et større produktmangfold kan gi økt forbruk og verdiskaping for norskdyrket kål. Rapporten ble tilgjengelig for prosjektdeltakere mars 2021 og publiseres som åpen rapport juni 2024 (del 1 og 2).

Til dokument

Sammendrag

Strong creeping red fescue (Festuca rubra L. spp. rubra Gaudin) is a cool-season perennial turfgrass widely used in temperate and subalpine regions around the globe. Although creeping red fescue turf is tolerant of shade, low fertility acidic soils, and drought conditions, creeping red fescue seed crops grown in optimal growing environments can lodge, ultimately reducing yield in regions where this important turfgrass is grown for seed. To address this issue, we investigated the effects of two plant growth regulators (PGRs), chlormequat chloride (CCC) and trinexapac-ethyl (TE), on plant height, lodging, and seed yield of strong creeping red fescue over 9 site-years in the Peace River region of western Canada. The study encompassed 6 site-years with first-year stands and 3 site-years with second-year stands. The PGRs were applied alone and in a TE + CCC mixture at the two-node (BBCH 32–33, where BBCH is Biologische Bundesanstalt, Bundessortenamt and Chemische Industrie) and early head emergence (BBCH 51–52) growth stages in first- and second-year stands, respectively. The application of TE, CCC, and their mixture resulted in a differential decrease in lodging and an increase in seed yield in first-year stands. However, PGRs applied at BBCH 51–52 on second-year stands had no effect on seed yield but reduced plant height and lodging. This study found a negative correlation between seed yield and lodging. Among the PGR treatments, the CCC + TE mixture was the most effective in reducing lodging and increasing seed yield of strong creeping red fescue.

Til dokument

Sammendrag

Cultivation of microalgae has gained significant interest as an alternative protein source, potentially becoming a target commodity recovered from microalgae-based wastewater treatment. This study examined a semi-continuous cultivation strategy to optimize protein accumulation of the indigenous freshwater chlorophytes, Lobochlamys segnis and Klebsormidium flaccidum, and simultaneously remove nutrients from wastewater efficiently. A strain-specific regime was made based on a fixed biomass concentration at the start of 24-h cultivation cycle, i.e., a constant initial cell density, which regulated harvesting and fresh medium supply volume according to the dilution rate. Six cultivation cycles were conducted in lab-scale 1L reactors with a synthetic municipal wastewater. Lobochlamys segnis and K. flaccidum grew exponentially in all cycles. The biomass productivity was 573 and 580 mg L–1 day–1, in which the total protein consisted of 62 and 45% of dry cell weight (dw), respectively. When a culture medium deficient in nitrogen and phosphorus was used, protein level was significantly reduced. L. segnis consumed all NH4+ and PO43– supplied by the medium replacement, giving the removal rate of 9.2 and 5.2 mg L–1 day–1. Whereas K. flaccidum removed 13.8 mg L–1 day–1 NH4+ without completing PO43– removal. The amino acid profile of both strains was characterized by glutamic acids content (4–5% dw). We concluded that the designed cultivation regime would support a constant biomass production with stable and high protein content, along with an efficient removal of nutrient from the wastewater.

Sammendrag

Conservation biological control (CBC) is a sustainable measure for ecological intensification in agriculture to establish and maintain robust natural enemy populations. CBC is contributing to integrated pest management with reduced use of pesticides and support of native biodiversity in agroecosystems. Despite rapidly expanding research on CBC during the last decades, its application in pest management at the farm level is very limited. Here, we tested a CBC strategy in a 5-year on-farm study at three locations in East Norway. This CBC strategy combined two tools to increase biological control of aphids in spring barley; 1-ATTRACT, the application of a volatile organic compound (VOC) attractant that increases lacewing egg laying, and 2-HABITAT, the maintenance of natural border vegetation. We found that the VOC attractants recruited natural enemies and guided them to the right place at the right time from the border vegetation into the cropping area to control the aphid population efficiently and reliably. The results also showed that the VOC attractants combined with periodical maintained natural border vegetation provided a higher lacewing activity and aphid suppression than with annual sown floral buffer strips. We found that maintained natural border vegetation supported by VOC attractants provided lacewing populations that controlled aphids up to 100 m into the cropping area. Without VOC attractants we recorded lacewing activity up to 50 m from the border into the cropping area if natural border vegetation was available, and up to 25 m if no border vegetation existed. The overall results demonstrated the feasibility of this CBC approach under Norwegian farming conditions leading to the successful adoption of this CBC-strategy by the farming community.

Til dokument

Sammendrag

Key message We provide data on seedlot germination potential—a key trait related to regeneration—of 12 oak spe‑ cies. Germination was tested at the University of Granada following international protocols with 8985 acorns from 93 batches and 16 countries across Europe. Data on germination probability, acorn origin, mass, and moisture content measured on another 4544 acorns are available at https://doi.org/10.30827/Digibug.87318. Associated metadata are available at https://metadata-​afs.nancy.inra.fr/geonetwork/srv/fre/catalog.search#/metadata/a742c6d8-​bc37-​4ca2-​ 8b81-​2447c5a8858d. Keywords Acorn, Germination test, Seedlot germination potential, Seed mass, Seed moisture, Seed viability

Til dokument

Sammendrag

Black Soldier Fly (Hermetia illucens [L.], Diptera: Stratiomyidae) larvae (BSFL) production from food waste is gaining interest. Food waste, a heterogeneous mix of agro-food and catering leftovers serves as a challenging feedstock for BSF growth due to its varying nutrient composition. BSF, are classified as polyphagous insects with a digestive system featuring midgut for digestion and nutrient absorption. The conversion of food waste by BSFL is heavily influenced by Enterococcus, Klebsiella, Morganella, Providencia, and Scrofimicrobium, which play a vital role in substrate utilization. These microbes determine growth patterns, longevity, oviposition, and egg hatchability, which are intricately tied to the sugar and protein content of their dietary substrates. Pre-treatment techniques including hydrothermal treatment, ionization, pulse electric field discharge, and microbial treatment showed better efficiency in improving the wet waste biomass surface area and waste recovery ratio. In terms of environmental sustainability, a life cycle assessment (LCA) of food waste to BSF conversion facility yields a low global warming potential (GWP) score of 17.36 kg CO2 per ton of functional unit with a significant environmental impact during pre-treatment of food waste at a mass-rearing of BSFL. Therefore, this review emphasizes the digestive system, and gut microbiota of BSFL, with food waste-nutrient utilization by the BSFL. Environmentally promising steps involved in the valorization of food waste resources were evaluated in detail. This review also covers the international regulations involved in food waste fed BSFL, and techno-economic assessment to optimize its valuable nutrients for the new economy in waste management with less environmental footprint.

Til dokument

Sammendrag

Wood-decay fungi are adapted to growth under different climate conditions and on various host tree species, but little is known about intraspecific variation in growth, substrate specificity and decay rates under different climatic conditions. Such knowledge is relevant to understand how wood-decay fungi will respond to climate change. Here, we investigate whether populations of the widespread brown-rot fungus Fomitopsis pinicola grow at different rates under different temperatures and water availabilities and whether the decay rate of the two wood substrates, Alnus incana and Picea abies, differs across populations. We isolated 72 cultures from fruit bodies collected in nine geographic localities across Norway, representing different climate conditions and substrates. We conducted in vitro growth experiments to assess the level of intraspecific phenotypic variability in temperature-dependent growth. All populations showed a strong but similar response in mycelial growth rates to different temperatures and water potentials. There were no consistent differences between populations in growth rates across temperatures, but larger variation between populations at the higher temperatures. Similarly, we observed no significant differences in wood decay rates across the nine populations and no signs of substrate specific adaptation to P. abies and A. incana. Our results indicate that local adaptation to different climates or substrates, as revealed by in vitro growth experiments, has to a limited extent, taken place during the few thousand years Fomitopsis pinicola has been present in this area.

Til dokument

Sammendrag

The importance of phosphorus (P) in regulating ecosystem responses to climate change has fostered P-cycle implementation in land surface models, but their CO2 effects predictions have not been evaluated against measurements. Here, we perform a data-driven model evaluation where simulations of eight widely used P-enabled models were confronted with observations from a long-term free-air CO2 enrichment experiment in a mature, P-limited Eucalyptus forest. We show that most models predicted the correct sign and magnitude of the CO2 effect on ecosystem carbon (C) sequestration, but they generally overestimated the effects on plant C uptake and growth. We identify leaf-to-canopy scaling of photosynthesis, plant tissue stoichiometry, plant belowground C allocation, and the subsequent consequences for plant-microbial interaction as key areas in which models of ecosystem C-P interaction can be improved. Together, this data-model intercomparison reveals data-driven insights into the performance and functionality of P-enabled models and adds to the existing evidence that the global CO2-driven carbon sink is overestimated by models.