Biografi

Jeg er en forsker i driftsteknikk med spesiell vekt på treteknologi. Arbeidet mitt omfatter de tradisjonelle skogteknologiske spørsmål, som produktivitet- og tidsstudier, forskning innen treets verdikjede og apteringsoptimalisering, samt studier innen logistikk og bioenergi. Jeg fokuserer også på produksjon og kostnadsmodellering innen skogindustrien, samt analyser av treets egenskaper.

Utdannelse: Doktorgrad i skogfag, med spesialisering i treteknologi ved Universitetet i Helsinki, Finland (2015). Mastergrad i skogfag, med spesialisering i driftsteknikk og treteknologi ved Universitetet i Joensuu, Finland (2006).

Les mer
Til dokument

Sammendrag

Butt rot is a main defect in Norway spruce (Picea abies (L.) Karst.) trees and causes large economic losses for forest owners. However, little empirical research has been done on the effects of butt rot on harvested roundwood and the magnitude of the resulting economic losses. The main objective of this study was to characterize the direct economic losses caused by butt rot in Norway spruce trees for Norwegian forest owners. We used data obtained from seven cut-to-length harvesters, comprising ∼400,000 trees (∼140,000 m3) with corresponding stem profiles and wood grade information. We quantified the economic losses due to butt rot using bucking simulations, for which in a first case, defects caused by butt rot were included, and in a second case, all trees were assumed to be free of butt rot. 16% of trees were affected by butt rot, whereby butt rot tended to occur in larger trees. When butt rot was present in a tree, the saw log volume was reduced by 48%. Proportions of roundwood volume affected by butt rot varied considerably across harvested stands. Our results suggest that butt rot causes economic losses upwards of 7% of wood revenues, corresponding to € 18.5 million annually in Norway.

Til dokument

Sammendrag

The identification of individual tree logs along the wood procurement chain is a coveted goal within the forest industry. The tracing of logs from the sawmill back to the forest would support the legal and sustainable sourcing of wood, as well as increase the resource efficiency and value of harvested timber. In this work, using a dataset of thousands of Scots pine (Pinus sylvestris L.) log end images displaying varying perspectives, lighting, and aging effects, we develop and assess log identification methods based on deep convolutional neural networks. The estimated rank-1 accuracy of our final model on an independent test set of 99 logs is 84 and 91% when allowing for random rotations of the log ends and when keeping each log at approximately fixed orientation, respectively. We estimate the scaling of these methods up to a template pool size of 493 logs, which reveals a weak dependence of accuracy on pool size for logs at fixed orientation. The deep learning approach gives superior results to a classical local binary pattern method, and appears feasible in practice, assuming that pre-filtering of the log database can be leveraged depending on the use case and properties of the queried log image. We make our dataset publicly available.