Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2018

Til dokument

Sammendrag

Different forage grass models are used to simulate forage yield and nutritive attributes, but these models are seldom compared, particularly those for timothy (Phleum pratense L.), a widely grown forage grass species in agricultural regions with a cold temperate climate. We compared the models BASGRA, CATIMO and STICS for their predictions of timothy crude protein (CP) concentration, neutral detergent fibre (NDF) concentration and NDF digestibility (dNDF), three important forage nutritive attributes. Data on CP and NDF concentrations, and dNDF and the associated weather and soil data for seven cultivars, taken from eight field experiments in Canada, Finland, Norway, and Sweden, were divided into calibration and validation datasets. Model parameters were estimated for each cultivar separately (cultivar-specific calibration) and for all cultivars together (generic calibration), using different methods for the three models. Normalized root mean square error (RMSE) in prediction of CP concentration varied between 16 and 26% for BASGRA, 45 and 101% for CATIMO and 23 and 40% for STICS across the two calibration methods and the calibration and validation datasets. Normalised RMSE in prediction of NDF concentration varied between 8 and 13% for BASGRA, 14 and 21% for CATIMO and 8 and 12% for STICS, while for dNDF it varied between 7 and 22% for BASGRA, 7 and 38% for CATIMO and 5 and 6% for STICS. Cultivar-specific calibration improved the performance of CATIMO and STICS, but not BASGRA, compared with generic calibration. The prediction accuracy for NDF concentration and dNDF with the three models was within the same range or better than that for forage dry matter (DM) yield of timothy. Overall, the three models performed well in predicting some nutritive attributes and yield in Northern Europe and Canada, but improvements are required, particularly to increase the prediction accuracy of CP concentration.

Til dokument

Sammendrag

Accelerating international trade and climate change make pathogen spread an increasing concern. Hymenoscyphus fraxineus, the causal agent of ash dieback, is a fungal pathogen that has been moving across continents and hosts from Asian to European ash. Most European common ash trees (Fraxinus excelsior) are highly susceptible to H.fraxineus, although a minority (~5%) have partial resistance to dieback. Here, we assemble and annotate a H.fraxineus draft genome, which approaches chromosome scale. Pathogen genetic diversity across Europe and in Japan, reveals a strong bottleneck in Europe, though a signal of adaptive diversity remains in key host interaction genes. We find that the European population was founded by two divergent haploid individuals. Divergence between these haplotypes represents the ancestral polymorphism within a large source population. Subsequent introduction from this source would greatly increase adaptive potential of the pathogen. Thus, further introgression of H.fraxineus into Europe represents a potential threat and Europe-wide biological security measures are needed to manage this disease.

Til dokument

Sammendrag

Species of Leptographium are characterized by mononematous or synnematous conidiophores and are commonly associated with different arthropods. Some of them also produce a sexual state characterised by globose ascomata with elongated necks. Compared to investigations on coniferous trees, the occurrence of Leptographium species on hardwood trees has been poorly studied in Europe. During a survey of ophiostomatoid fungi on various hardwood tree species in Norway and Poland, three unusual species, which fit in the broader morphological description of Leptographium spp., were found in association with Trypodendron domesticum, Trypodendron signatum and Dryocoetes alni, and from wounds on a variety of hardwoods. Phylogenetic analyses of sequence data for six different loci (ITS1–5.8 S–ITS2, ITS2-LSU, ACT, b-tubulin, CAL, and TEF-1a) showed that these Leptographium species are phylogenetically closely related to the species of the Grosmannia olivacea complex. The first species forms a well-supported lineage that includes Ophiostoma brevicolle, while the two other new taxa resided in a separate lineage; possibly affiliated with Grosmannia francke-grosmanniae. All the new species produce perithecia with necks terminating in ostiolar hyphae and orange-section shaped ascospores with cucullate, gelatinous sheaths. These species also produce dark olivaceous mononematous asexual states in culture. In addition, two of the newly described species have a second type of conidiophore with a short and non-pigmented stipe. The new Leptographium species can be easily distinguished from each other by their appearance and growth in culture. Based on novel morphological characters and distinct DNA sequences, these fungi were recognised as new taxa for which the names Leptographium tardum sp. nov., Leptographium vulnerum sp. nov., and Leptographium flavum sp. nov. are provided.

Til dokument

Sammendrag

Projected climate change scenarios such as frequently occurring dry summer spells are an enormous threat to the health of boreal conifer forests. We identified visible features indicating wood with tracheids predisposed for hydraulic and mechanical dysfunction in Norway spruce, suggest why this is formed during severe summer drought and hypothesised on mechanism that would cause tracheid collapse and stem cracks. Trees from southern Sweden that showed signs of severe reaction to drought, i.e. stem cracks along the trunk, were compared to healthy, undamaged trees. Rings investigated included those formed in 2006, a year with an extremely dry summer season in the study region. In southern Norway, we investigated trees with and without drought-induced top dieback symptoms. We analysed anatomical features such as tracheid lumen diameter, thickness of cell wall and its various layers (S1, S2 and S3), applied Raman imaging in order to get information on the lignin distribution in the cell wall and the compound middle lamellae and performed hydraulic flow and shrinkage experiments. Although tracheids in annual rings with signs of collapse had higher tangential lumen diameters than those in “normal” annual rings, we conclude that collapse of tracheid walls depends mainly on wall thickness, which is genetically determined to a large extent. Spruce trees that produce earlywood with extremely thin cell walls can develop wall collapse and internal cracks under the impact of dry spells. We also present a new diagnostic tool for detecting individuals that are prone to cell wall collapse and stem cracks: Lucid bands, i.e. bands in the fresh sapwood with very thin cell walls and inhomogeneous lignin distribution in the S-layers and the compound middle lamellae that lost their hydraulic function due to periods of severe summer drought. The detection of genotypes with lucid bands could be useful for an early selection against individuals that are prone to stem cracks under the impact of severe summer drought, and also for early downgrading of logs prone to cracking during industrial kiln drying

Til dokument

Sammendrag

Horizontal Visibility Graphs (HVGs) are a recently developed method to construct networks from time series. The values of the time series are considered as the nodes of the network and are linked to each other if there is no larger value between them, such as they can “see” each other. The network properties reflect the nonlinear dynamics of the time series. For some classes of stochastic processes and for periodic time series, analytical results can be obtained for network-derived quantities such as the degree distribution, the local clustering coefficient distribution, the mean path length, and others. HVGs have the potential to discern between deterministic-chaotic and correlated-stochastic time series. Here, we investigate the sensitivity of the HVG methodology to properties and pre-processing of real-world data, i.e., time series length, the presence of ties, and deseasonalization, using a set of around 150 runoff time series from managed rivers at daily resolution from Brazil with an average length of 65 years. We show that an application of HVGs on real-world time series requires a careful consideration of data pre-processing steps and analysis methodology before robust results and interpretations can be obtained. For example, one recent analysis of the degree distribution of runoff records reported pronounced sub-exponential “long-tailed” behavior of North American rivers, whereas another study of South American rivers showed hyper-exponential “short-tailed” behavior resembling correlated noise.We demonstrate, using the dataset of Brazilian rivers, that these apparently contradictory results can be reconciled by minor differences in data-preprocessing (here: small differences in subtracting the seasonal cycle). Hence, data-preprocessing that is conventional in hydrology (“deseasonalization”) changes long-term correlations and the overall runoff dynamics substantially, and we present empirical consequences and extensive simulations to investigate these issues from a HVG methodological perspective. After carefully accounting for these methodological aspects, the HVG analysis reveals that the river runoff dataset shows indeed complex behavior that appears to stem from a superposition of short-term correlated noise and “long-tailed behaviour,” i.e., highly connected nodes. Moreover, the construction of a dam along a river tends to increase short-term correlations in runoff series. In summary, the present study illustrates the (often substantial) effects of methodological and data-preprocessing choices for the interpretation of river runoff dynamics in the HVG framework and its general applicability for real-world time series.

Til dokument

Sammendrag

Soil macroporosity affects field-scale water-cycle processes, such as infiltration, nutrient transport and runoff1,2, that are important for the development of successful global strategies that address challenges of food security, water scarcity, human health and loss of biodiversity3. Macropores—large pores that freely drain water under the influence of gravity—often represent less than 1 per cent of the soil volume, but can contribute more than 70 per cent of the total soil water infiltration4, which greatly magnifies their influence on the regional and global water cycle. Although climate influences the development of macropores through soil-forming processes, the extent and rate of such development and its effect on the water cycle are currently unknown. Here we show that drier climates induce the formation of greater soil macroporosity than do more humid ones, and that such climate-induced changes occur over shorter timescales than have previously been considered—probably years to decades. Furthermore, we find that changes in the effective porosity, a proxy for macroporosity, predicted from mean annual precipitation at the end of the century would result in changes in saturated soil hydraulic conductivity ranging from −55 to 34 per cent for five physiographic regions in the USA. Our results indicate that soil macroporosity may be altered rapidly in response to climate change and that associated continental-scale changes in soil hydraulic properties may set up unexplored feedbacks between climate and the land surface and thus intensify the water cycle.

Til dokument

Sammendrag

The sugarcane industry is the third largest user of pesticides in Malawi. Our aim with this study was to document pesticide use and handling practices that influence pesticide exposure among sugarcane farmers in Malawi. A semi-structured questionnaire was administered to 55 purposively selected sugarcane farmers and 7 key informants representing 1474 farmers in Nkhata Bay, Nkhotakota and Chikwawa Districts in Malawi. Our results indicate that herbicides and insecticides were widely used. Fifteen moderately and one extremely hazardous pesticide, based on World Health Organization (WHO) classification, were in use. Several of these pesticides: ametryn, acetochlor, monosodium methylarsonate and profenofos are not approved in the European Union because of their toxicity to terrestrial and aquatic life, and/or persistence in water and soil. Farmers (95%) knew that pesticides could enter the human body through the skin, nose (53%) and mouth (42%). They knew that pesticide runoff (80%) and leaching (100%) lead to contamination of water wells. However, this knowledge was not enough to motivate them to take precautionary measures to reduce pesticide exposure. Farmers (78%) had experienced skin irritation, 67% had headache, coughing and running nose during pesticide handling. Measures are in place to reduce pesticide exposure in the large estates and farms operated by farmer associations. Smallholder farmers acting independently do not have the resources and capacity to minimize their exposure to pesticides. There is need to put in place pesticide residue monitoring programs and farmer education on commercial sugarcane production and safe pesticide use as ways of reducing pesticide exposure.

Til dokument

Sammendrag

European plums are susceptible to fruit cracking close to harvest. Heavy rainfall may lead to extensive damages leaving open wounds in the fruit flesh. In addition, cuticular fractures were found. Plum cultivar and stage of maturity are two major factors affecting the susceptibility to cracking. In order to reduce the plums’ susceptibility to cracking plum trees were treated with foliar fertilization during the growing season. Experiments included treatment with boron, calcium and nitrogen. Experiments including treatments with different levels of foliar fertilization did not show clear correlations between treatments and cracking in all cultivars. However, in some cultivars, more cuticular fractures were observed in fruits from nitrogen treated trees and less fractures in fruit from calcium or boron treated trees. In these experiments foliar fertilization with nitrogen, calcium or boron did not affect the amount of visible cracks in fruit significantly. Foliar fertilization is often shown to delay ripening. Even though fruit samples were picked at the same maturity stage, the effect of reduced cracking due to boron and calcium treatments could be partly an effect of differences in maturity. To make sure the fruits would develop fractures, unripe plum fruits on the trees were kept in a plastic bag with zip-lock and a few mL of water (to obtain 100% RH) for one week (from two to one week prior to estimated harvest date). In this way, the susceptibility of fruits on trees treated differently could be observed.