Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2023

Til dokument

Sammendrag

Protected areas are one of the main strategic means for conserving biodiversity. Yet, the design of protected areas usually neglects phylogenetic diversity, an important diversity measure. In this paper we assess the phylogenetic diversity and species richness of vascular plants in Fennoscandian protected areas. We evaluate how much species richness and phylogenetic diversity is found within and outside protected areas, and the differences in plant diversity between different categories of protected areas. We also assess the differences in the diversity-area relationship of the different protected area categories in terms of both species richness and phylogenetic diversity. We build a multi-locus phylogeny of 1,519 native vascular plants of Norway, Sweden, and Finland. We estimate the phylogenetic diversity and species richness by combining the phylogeny with publicly available occurrence data and the currently protected area system of Fennoscandia. Our results indicate that protected areas in Fennoscandia hold more plant diversity when larger, and that phylogenetic diversity increases faster with area than species richness. We found evidence for more plant diversity outside of protected areas of the different countries of Fennoscandia than inside of protected areas, but no evidence for plant diversity differences between areas with different protection status. Hence, our results indicate that the current protected area system in Fennoscandia is no more effective in conserving phylogenetic diversity and species richness of vascular plants than a random selection of localities. Our results also indicate that planning conservation strategies around phylogenetic diversity, rather than species richness, might be a first step to protect vascular plant diversity more effectively. Biodiversity · Spatial phylogenetics · Conservation · Diversity-area relationship · Flora

Til dokument

Sammendrag

The objective of this study is to identify the needs related to geospatial LC, LU, and LCLUC information for spatial planning in Poland and Norway, and examine the usefulness of CLMS products in the context of these planning systems. The research has conducted based on a comparative analysis of two planning systems, to indicate areas where CLMS can improve or supplement national spatial data. The study shows that CLMS can provide information on up-to-date spatial data showing actual LC/LU/LCLUC, but that the degree of detail and the accuracy may be insufficient. CLMS data is harmonised across Europe and thus meets the need expressed by international organisations, for data that are consistent at a continental level. This is not a requirement in national planning systems in Poland and Norway, where the needs are regulated by national legislation. The thematic and geometric accuracy of national data sources are usually better than the data provided by CLMS, but CLMS might fill gaps when specific topics are missing in national mapping programs.

Til dokument

Sammendrag

Climate change can have an influence on rainfall that significantly affects the magnitude frequency of floods and droughts. Therefore, the analysis of the spatiotemporal distribution, variability, and trends of rainfall over the Mahi Basin in India is an important objective of the present work. Accordingly, a serial autocorrelation, coefficient of variation, Mann–Kendall (MK) and Sen’s slope test, innovative trend analysis (ITA), and Pettitt’s test were used in the rainfall analysis. The outcomes were derived from the monthly precipitation data (1901–2012) of 14 meteorology stations in the Mahi Basin. The serial autocorrelation results showed that there is no autocorrelation in the data series. The rainfall statistics denoted that the Mahi Basin receives 94.8% of its rainfall (821 mm) in the monsoon period (June–September). The normalized accumulated departure from the mean reveals that the annual and monsoon rainfall of the Mahi Basin were below average from 1901 to 1930 and above average from 1930 to 1990, followed by a period of fluctuating conditions. Annual and monsoon rainfall variations increase in the lower catchment of the basin. The annual and monsoon rainfall trend analysis specified a significant declining tendency for four stations and an increasing tendency for 3 stations, respectively. A significant declining trend in winter rainfall was observed for 9 stations under review. Likewise, out of 14 stations, 9 stations denote a significant decrease in pre-monsoon rainfall. Nevertheless, there is no significant increasing or decreasing tendency in annual, monsoon, and post-monsoon rainfall in the Mahi Basin. The Mann–Kendall test and innovative trend analysis indicate identical tendencies of annual and seasonal rainfall on the basin scale. The annual and monsoon rainfall of the basin showed a positive shift in rainfall after 1926. The rainfall analysis confirms that despite spatiotemporal variations in rainfall, there are no significant positive or negative trends of annual and monsoon rainfall on the basin scale. It suggests that the Mahi Basin received average rainfall (867 mm) annually and in the monsoon season (821 mm) from 1901 to 2012, except for a few years of high and low rainfall. Therefore, this study is important for flood and drought management, agriculture, and water management in the Mahi Basin.