Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2023
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Knut ØistadSammendrag
Det er ikke registrert sammendrag
Forfattere
Arne Verstraeten Peter Waldner Aldo Marchetto Andreas Schmitz Nicholas Clarke Anne Thimonier Catherine Hilgers Anne-Katrin Prescher Karin HansenSammendrag
Det er ikke registrert sammendrag
Forfattere
Clemens Blattert Mikko Mönkkönen Daniel Burgas Fulvio Di Fulvio Astor Toraño Caicoya Marta Vergarechea Julian Klein Markus Hartikainen Clara Antón Fernandéz Rasmus Astrup Michael Emmerich Nicklas Forsell Jani Lukkarinen Johanna Lundström Samuli Pitzén Werner Poschenrieder Eeva Primmer Tord Snäll Kyle EyvindsonSammendrag
Det er ikke registrert sammendrag
Forfattere
Astor Toraño Caicoya Werner Poschenrieder Clemens Blattert Kyle Eyvindson Markus Hartikainen Daniel Burgas Mikko Mönkkönen Enno Uhl Marta Vergarechea Hans PretzschSammendrag
Det er ikke registrert sammendrag
Forfattere
El Houssein Chouaib HarikSammendrag
Det er ikke registrert sammendrag
Sammendrag
Aim Current global warming is driving changes in biological assemblages by increasing the number of thermophilic species while reducing the number of cold-adapted species, leading to thermophilization of these assemblages. However, there is increasing evidence that thermophilization might not keep pace with global warming, resulting in thermal lags. Here, we quantify the magnitude of thermal lags of plant assemblages in Norway during the last century and assess how their spatio-temporal variation is related to variables associated with temperature-change velocity, topographic heterogeneity, and habitat type. Location Norway. Time period 1905–2007. Major taxa studied Vascular plants. Methods We inferred floristic temperature from 16,351 plant assemblages and calculated the floristic temperature anomaly (difference between floristic temperature and baseline temperature) and thermal lag index (difference between reconstructed floristic temperature and observed climatic temperature) from 1905 until 2007. Using generalized least squares models, we analysed how the variation in observed lags since 1980 is related to temperature-change velocity (measured as magnitude, rate of temperature change, and distance to past analogous thermal conditions), topographic heterogeneity, and habitat type (forest versus non-forest), after accounting for the baseline temperature. Results The floristic temperature anomaly increases overall during the study period. However, thermophilization falls behind temperature change, causing a constantly increasing lag for the same period. The thermal lag index increases most strongly in the period after 1980, when it is best explained by variables related to temperature-change velocity. We also find a higher lag in non-forested areas, while no relationship is detected between the degree of thermal lag and fine-scale topographic heterogeneity. Main conclusions The thermal lag of plant assemblages has increased as global warming outpaces thermophilization responses. The current lag is associated with different dimensions of temperature-change velocity at a broad landscape scale, suggesting specifically that limited migration is an important contributor to the observed lags.
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Subal Chandra Kumbhakar Mingyang Li Gudbrand LienSammendrag
Why should the producers be subsidized? What are the contributions and channels of subsidies in total factor productivity (TFP) and profitability changes? We address these in a novel way by decomposing TFP and profitability changes into technical change, scale economies, subsidies, input and output misallocations, and inefficiency. A battery of models is deployed to answer these questions, instead of using a single model as done in past studies. First, we use both parametric and nonparametric approaches and estimate them treating subsidies as either exogenous or endogenous. Second, we reexamine both approaches with and without inefficiency. Third, we check the robustness of results across different models using a panel of Norwegian farms. The empirical results show an overall increase of 2.3% per annum in profitability in which the subsidy, scale, and inefficiency components contributed, on average, positively. It is important to note that the magnitude of these components varies across models.