Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2022
Sammendrag
Two Life-Cycle Assessments (LCAs) were conducted to evaluate the environmental performances of selected novel eco-intensification innovations for the treatment and valorisation of sludge and fish mortalities from finfish aquaculture. The first innovation is based on a new process for filtering and drying particles from the reject water from a Recirculating Aquaculture System (RAS), with end-of-life recovery of nutrients and biomass to be reused as organic fertiliser or as energy source. The second process is based on a new device for drying fish mortalities and reusing the end-product as ingredient in the pet food industry or as energy source. Innovations refer to a functional unit of 1 ton of farmed fish and of fish mortalities, respectively, and were tested with a RAS for smolt production within the physical system boundary of a Norwegian facility. A set of standard indicators was selected for the Life-Cycle Impact Assessment (LCIA). The results indicate that the new processes compare well with the established ones, showing a marked decrease in most impact categories: indicators decrease by −12% through to −67% when sludge treatment innovations are applied, and by more than −86% after novel changes about fish mortality, with water consumption instead increasing by +7% and up to +50%, respectively. Furthermore, the analysis provided insights which could lead to improve their environmental performances.
Forfattere
Callum Aidan Stephen Hill Maija Kymäläinen Lauri RautkariSammendrag
Timber cladding has been used since historical times as a locally available, affordable weather protection option. Nowadays, interest in timber cladding is again increasing because of ecological reasons as well as naturalistic viewpoints. This review presents a comprehensive report on timber cladding in a European context, beginning with a brief overview of the history before considering contemporary use of timber cladding for building envelopes. The basic principles of good design are considered, paying attention to timber orientation, fixings and environmental risk factors. The relationship of timber with moisture is discussed with respect to sorption behaviour, dimensional instability and design methods to minimise the negative consequences associated with wetting. The behaviour of timber cladding in fires, the effects of environmental stresses and weathering, as well as the cladding properties and the variation thereof with different types of wood and anatomical factors (including exposure of different timber faces), are examined. The review then moves on to considering different methods for protecting timber, such as the use of coatings, preservatives, fire retardants and wood modification. A brief discussion of various environmental considerations is also included, including life cycle assessment, embodied carbon and sequestered atmospheric carbon. The review finishes by making concluding remarks, providing a basis for the selection of appropriate cladding types for different environments.
Forfattere
Lucius Tamm Barbara Thuerig Stoilko Apostolov Hugh Blogg Esmeralda Borgo Paola Elisa Corneo Susanne Fittje Michelangelo de Palma Adam Donko Catherine Experton Évelyne Alcázar Marin Ángela Morell Pérez Ilaria Pertot Anton Rasmussen Håvard Steinshamn Airi Vetemaa Helga Willer Joëlle Herforth-RahméSammendrag
The reduction of copper-based plant-protection products with the final aim of phasing out has a high priority in European policy, as well as in organic agriculture. Our survey aims at providing an overview of the current use of these products in European organic agriculture and the need for alternatives to allow policymakers to develop strategies for a complete phasing out. Due to a lack of centralized databases on pesticide use, our survey combines expert knowledge on permitted and real copper use per crop and country, with statistics on organic area. In the 12 surveyed countries (Belgium, Bulgaria, Denmark, Estonia, France, Germany, Hungary, Italy, Norway, Spain, Switzerland, and the UK), we calculated that approximately 3258 t copper metal per year is consumed by organic agriculture, equaling to 53% of the permitted annual dosage. This amount is split between olives (1263 t y−1, 39%), grapevine (990 t y−1, 30%), and almonds (317 t y−1, 10%), followed by other crops with much smaller annual uses (<80 t y−1). In 56% of the allowed cases (countries × crops), farmers use less than half of the allowed amount, and in 27%, they use less than a quarter. At the time being, completely abandoning copper fungicides would lead to high yield losses in many crops. To successfully reduce or avoid copper use, all preventive strategies have to be fully implemented, breeding programs need to be intensified, and several affordable alternative products need to be brought to the market.
Forfattere
Jahn Davik Dag Røen Erik Lysøe Matteo Buti Simeon Rossmann Muath K Alsheikh Erez Lieberman Aiden Olga Dudchenko Daniel James SargentSammendrag
Rubus idaeus L. (red raspberry), is a perennial woody plant species of the Rosaceae family that is widely cultivated in the temperate regions of world and is thus an economically important soft fruit species. It is prized for its flavour and aroma, as well as a high content of healthful compounds such as vitamins and antioxidants. Breeding programs exist globally for red raspberry, but variety development is a long and challenging process. Genomic and molecular tools for red raspberry are valuable resources for breeding. Here, a chromosome-length genome sequence assembly and related gene predictions for the red raspberry cultivar ‘Anitra’ are presented, comprising PacBio long read sequencing scaffolded using Hi-C sequence data. The assembled genome sequence totalled 291.7 Mbp, with 247.5 Mbp (84.8%) incorporated into seven sequencing scaffolds with an average length of 35.4 Mbp. A total of 39,448 protein-coding genes were predicted, 75% of which were functionally annotated. The seven chromosome scaffolds were anchored to a previously published genetic linkage map with a high degree of synteny and comparisons to genomes of closely related species within the Rosoideae revealed chromosome-scale rearrangements that have occurred over relatively short evolutionary periods. A chromosome-level genomic sequence of R. idaeus will be a valuable resource for the knowledge of its genome structure and function in red raspberry and will be a useful and important resource for researchers and plant breeders.
Forfattere
Silvia Vanino Tiziana Pirelli Claudia Di Bene Frederik Bøe Nádia Castanheira Claire Chenu Sophie Cornu Virginijus Feiza Dario Fornara Olivier Heller Raimonds Kasparinskis Saskia Keesstra Maria Valentina Lasorella Sevinç Madenoglu Katharina H. E. Meurer Lilian O'Sullivan Noemi Peter Chiara Piccini Grzegorz Siebielec Bozena Smreczak Martin Hvarregaard Thorsøe Roberta FarinaSammendrag
Climate-smart sustainable management of agricultural soil is critical to improve soil health, enhance food and water security, contribute to climate change mitigation and adaptation, biodiversity preservation, and improve human health and wellbeing. The European Joint Programme for Soil (EJP SOIL) started in 2020 with the aim to significantly improve soil management knowledge and create a sustainable and integrated European soil research system. EJP SOIL involves more than 350 scientists across 24 Countries and has been addressing multiple aspects associated with soil management across different European agroecosystems. This study summarizes the key findings of stakeholder consultations conducted at the national level across 20 countries with the aim to identify important barriers and challenges currently affecting soil knowledge but also assess opportunities to overcome these obstacles. Our findings demonstrate that there is significant room for improvement in terms of knowledge production, dissemination and adoption. Among the most important barriers identified by consulted stakeholders are technical, political, social and economic obstacles, which strongly limit the development and full exploitation of the outcomes of soil research. The main soil challenge across consulted member states remains to improve soil organic matter and peat soil conservation while soil water storage capacity is a key challenge in Southern Europe. Findings from this study clearly suggest that going forward climate-smart sustainable soil management will benefit from (1) increases in research funding, (2) the maintenance and valorisation of long-term (field) experiments, (3) the creation of knowledge sharing networks and interlinked national and European infrastructures, and (4) the development of regionally-tailored soil management strategies. All the above-mentioned interventions can contribute to the creation of healthy, resilient and sustainable soil ecosystems across Europe.
Forfattere
Liang Wang Maria N.P. Olsen Christophe Moni Alba Diuegez-Alonso Jose Maria de la Rosa Marianne Stenrød Xingang Liu Liangang MaoSammendrag
Production of biochar from corn cob and corn stalk has gained great interest for efficient waste management with benefits of improving soil properties, increasing crop productivity, and contributing to carbon sequestration. This study investigated slow pyrolysis of corn cob and corn stalk at 600 °C to characterize yields and properties of products, with focus on solid biochar. Spruce wood, a rather well studied woody biomass, was also included for comparison purposes. It was observed that yields of biochar and condensates from corn cob, corn stalk, and spruce wood were comparable. However, gas release profiles and yields from the three biomasses were quite different, which is mainly related to the different chemical compositions (i.e., hemicellulose, cellulose, lignin, and inorganic species) of the studied raw feedstocks. The produced biochars were analyzed for proximate analysis, CHNS-elemental analysis, specific surface area and specific pore volume for pores in the nm-range, inorganic composition, solid functional groups, and aromaticity. The corn cob and corn stalk biochar presented significantly higher concentration of inorganic elements, especially P and K, favoring soil application. The SEM analysis results showed that the spruce wood biochar has different microstructure than corn cob and corn stalk biochars. Condensates and light gases, as by-products from biochar production, contained over 50% of the energy and 40% of the total carbon of the initial biomass. Utilization of the condensates and light gases as valuable resources is therefore critical for improving environmental and energy benefits of the biochar production process.
Sammendrag
Aim Grasslands of varying land-use intensity and history were studied to describe and test species richness and compositional patterns and their relationships with the physical environment, land cover of the surrounding landscape, patch geometry, and grazing. Location The mainland of Norway. Methods We utilized data from the Norwegian Monitoring Programme for Agricultural Landscapes, which recorded vascular plants from 569 plots, placed within 97 monitoring squares systematically distributed throughout agricultural land on the Norwegian mainland. We identified four grassland types: (i) moderately fertilized, moist meadows; (ii) overgrown agricultural land; (iii) cultivated pastures and disturbed ground; and (iv) natural/unfertilized and outfield pastures. Results Soil moisture and grazing measures were found to be important in explaining species compositional variation in all grassland types. Richness patterns were best explained by complex and differing combinations of environmental indicators. Nevertheless, negative (nitrogen and light level) or unimodal (pH) responses were similar across grassland types. Vegetation plots adjacent to areas historically and/or currently dominated by mires, forests, or pastures, as well as abandoned and overgrown grasslands, had a slightly higher species richness. Larger grasslands surrounding the vegetation plots had slightly less species than smaller grasslands. Conclusions This study demonstrates that data from a national monitoring programme on agricultural grasslands can be used for plant ecological research. The results indicate that climate-change-related shifts along moisture and nutrient gradients (increases) may alter both species composition and species richness in the studied grasslands. It is likely that large and contiguous managed (grass)land might affect areas perceived as remnants, probably caused by the transformation to homogeneous (agri)cultural landscapes reducing edge zones, which in turn may threaten the species pool and richness. The importance of land use and land-cover composition should be considered when planning management actions in extensively used high-latitude grasslands.
Forfattere
Yeqing Li Zhangmu Jing Junting Pan Gang Luo Lu Feng Hao Jiang Hongjun Zhou Quan Xu Yanjuan Lu Hongbin LiuSammendrag
Due to the diversity of microbiota and the high complexity of their interactions that mediate biogas production, a detailed understanding of the microbiota is essential for the overall stability and performance of the anaerobic digestion (AD) process. This study evaluated the microbial taxonomy, metabolism, function, and genetic differences in 14 full-scale biogas reactors and laboratory reactors operating under various conditions in China. This is the first known study of the microbial ecology of AD at food waste (FW) at a regional scale based on multi-omics (16S rRNA gene amplicon sequencing, metagenomics, and proteomics). Temperature significantly affected the bacterial and archaeal community structure (R2 = 0.996, P = 0.001; R2 = 0.846, P < 0.002) and total inorganic carbon(TIC) slightly changed the microbial structure (R2 = 0.532, P = 0.005; R2 = 0.349, P = 0.016). The Wood-Ljungdahl coupled with hydrogenotrophic methanogenic pathways were dominant in the thermophilic reactors, where the acs, metF, cooA, mer, mch and ftr genes were 10.1-, 2.8-, 16.2-, 1.74-, 4.15-, 1.04-folds of the mesophilic reactors (P < 0.01). However, acetoclastic and methylotrophic methanogenesis was the primary pathway in the mesophilic reactors, where the ackA, pta, cdh and mta genes were 2.2-, 3.2-, 14.3-, 1.88-folds of the thermophilic group (P < 0.01). Finally, the Wilcoxon rank-sum test was applied to explain the cause of the temperature affecting AD microbial activities. The findings have deepened the understanding of the effect of temperature on AD microbial ecosystems and are expected to guide the construction and management of full-scale FW biogas plants.
Forfattere
Joyce Machado Nunes Romeiro Tron Haakon Eid Clara Antón Fernández Annika Kangas Erik TrømborgSammendrag
It is expected that European Boreal and Temperate forests will be greatly affected by climate change, causing natural disturbances to increase in frequency and severity. To detangle how, through forest management, we can make forests less vulnerable to the impact of natural disturbances, we need to include the risks of such disturbances in our decision-making tools. The present review investigates: i) how the most important forestry-related natural disturbances are linked to climate change, and ii) different modelling approaches that assess the risks of natural disturbances and their applicability for large-scale forest management planning. Global warming will decrease frozen soil periods, which increases root rot, snow, ice and wind damage, cascading into an increment of bark beetle damage. Central Europe will experience a decrease in precipitation and increase in temperature, which lowers tree defenses against bark beetles and increases root rot infestations. Ice and wet snow damages are expected to increase in Northern Boreal forests, and to reduce in Temperate and Southern Boreal forests. However, lack of snow cover may increase cases of frost-damaged seedlings. The increased temperatures and drought periods, together with a fuel increment from other disturbances, likely enhance wildfire risk, especially for Temperate forests. For the review of European modelling approaches, thirty-nine disturbance models were assessed and categorized according to their required input variables and to the models’ outputs. Probability models are usually common for all disturbance model approaches, however, models that predict disturbance effects seem to be scarce.
Forfattere
Vilde Lytskjold Haukenes Lisa Åsgård Johan Asplund Line Nybakken Jørund Rolstad Ken Olaf Storaunet Mikael OhlsonSammendrag
Knowledge about the spatial variation of boreal forest soil carbon (C) stocks is limited, but crucial for establishing management practices that prevent losses of soil C. Here, we quantified the surface soil C stocks across small spatial scales, and aim to contribute to an improved understanding of the drivers involved in boreal forest soil C accumulation. Our study is based on C analyses of 192 soil cores, positioned and recorded systematically within a forest area of 11 ha. The study area is a south-central Norwegian boreal forest landscape, where the fire history for the past 650 years has been reconstructed. Soil C stocks ranged from 1.3 to 96.7 kg m−2 and were related to fire frequency, ecosystem productivity, vegetation attributes, and hydro-topography. Soil C stocks increased with soil nitrogen concentration, soil water content, Sphagnum- and litter-dominated forest floor vegetation, and proportion of silt in the mineral soil, and decreased with fire frequency in site 1, feathermoss- and lichen-dominated forest floor vegetation and increasing slope. Our results emphasize that boreal forest surface soil C stocks are highly variable in size across fine spatial scales, shaped by an interplay between historical forest fires, ecosystem productivity, forest floor vegetation, and hydro-topography.