Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2024
Forfattere
Ngan Bao Huynh Paal Krokene Jorunn Elisabeth Olsen Taina Pennanen Adriana Puentes Vaida Sirgedaitė-Šėžienė Vytautas Čėsna Ieva Čėsnienė Melissa MagerøySammendrag
Det er ikke registrert sammendrag
Sammendrag
• For more than 20 years, methyl jasmonate (MeJA) has been used to study inducible defenses in conifers and to increase tree resistance to pests and pathogens. Despite the numerous studies on the subject, no attempts have been made to summarize or quantify how MeJA affects resistance and growth in conifers. Here we present a quantitative meta-analysis of the effects of MeJA treatment on the conifer genera Pinus and Picea, two of the most economically and ecologically important tree genera in boreal, temperate, and alpine forests. • A literature search yielded 120 relevant papers. We summarized the key experimental methods used in these papers and performed a meta-analysis of how MeJA affects tree growth and resistance to pests and pathogens. • The results show that MeJA negatively affects tree growth, with an overall effect size of −0.63. The overall effect size of MeJA for tree resistance was −0.76, indicating that MeJA treatment significantly reduces tree damage caused by biotic stressors. • Although our meta-analysis shows that MeJA is effective in enhancing conifer defenses, there are still gaps in our understanding of the durability and ecological consequences of MeJA treatment. We provide suggestions for how future research should be conducted to address these gaps.
Sammendrag
Priming of Norway spruce (Picea abies) inducible defenses is a promising way to protect young trees from herbivores and pathogens. Methyl jasmonate (MeJA) application is known to induce and potentially prime Norway spruce defenses but may also reduce plant growth. Therefore, we tested β-aminobutyric acid (BABA) as an alternative priming chemical to enhance spruce resistance, using 2-year-old Norway spruce plants. We compared inducible defense responses, i.e. traumatic resin duct formation and accumulation of defensive metabolites, in bark and xylem tissues of BABA- or MeJA-treated plants before and after wounding. We also evaluated the effect of these chemical treatments on Norway spruce resistance to the pathogenic bluestain fungus Grosmania penicilliata. BABA did not induce defense responses or pathogen resistance, it even reduced concentrations of total terpenes in the treated plants. In contrast, MeJA induced traumatic resin duct formation, accumulation of flavonoids, pathogen resistance, and did not affect plant growth. For the first time, flavan-3-ols (catechins) were shown to have a primed response to MeJA treatment in Norway spruce. Our results indicated that BABA is not a suitable alternative priming chemical to MeJA in Norway spruce.
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Løkflue og fusariose gjør stor skade i norsk løkproduksjon - og problemet er økende. Nå skal Nibio utvikle metoder for identifikasjon, diagnostikk, overvåking, varsling og bekjempelse av disse skadegjørerne.
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Zahra Bitarafan Wiktoria Kaczmarek-Derda Therese With Berge Carl Emil Øyri Inger Sundheim FløistadSammendrag
BACKGROUND As regulations on pesticides become more stringent, it is likely that there will be interest in steam as an alternative approach for soil disinfestation. This study investigates the feasibility of utilizing a soil steaming device for thermal control of invasive plants. RESULTS Seeds of Echinochloa crus-galli, Impatiens glandulifera, Solidago canadensis, and rhizome fragments of Reynoutria × bohemica were examined for thermal sensitivity through two exposure methods: (1) steam treatment of propagative material in soil; (2) exposure of propagative material to warm soil just after heated by steam. Soil temperatures in the range of 60–99 °C and dwelling period of 3 min were tested. Increased soil temperature decreased seed germination/rhizome sprouting. The exposure method had a significant effect where higher temperatures were needed to reduce the seed germination/rhizome sprouting in method 2 explained by the effect of extra heat given in method 1. Using method 1, for E. crus-galli and S. canadensis, the maximum mean temperature of approximately 80 °C was enough to achieve the effective weed control level (90%). This was lower for I. glandulifera and higher for R. × bohemica. Using method 2, 90% control was achieved at 95 °C for S. canadensis; more than 115 °C for I. glandulifera; and more than 130 °C for E. crus-galli and R. × bohemica. CONCLUSION Our findings showed a promising mortality rate for weeds propagative materials through soil steaming. However, the species showed varying responses to heat and therefore steam regulation should be based on the differences in weeds' susceptibility to heat.
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Igor A. Yakovlev Marcos Viejo Jorunn Elisabeth Olsen Mari Talgø Syvertsen Payel Bhattacharjee Mallikarjuna Rao Kovi Torstein Tengs Carl Gunnar FossdalSammendrag
Det er ikke registrert sammendrag