Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2025

Sammendrag

Dairy farming significantly contributes to global greenhouse gas (GHG) emissions, particularly methane (CH4). This study evaluates the performance of Norwegian dairy farms and the socio-economic factors influencing emissions over 30 years (1991-2020). We assessed dairy farm performance by evaluating both efficiency and environmental impact, with a particular focus on reducing methane emissions. This is crucial for achieving sustainable and resource-efficient farming within a circular economy framework. Methane emissions were calculated using the Intergovernmental Panel on Climate Change (IPCC) Tier 2 methodology, incorporating country-specific data on dairy cattle diet and production. Utilizing a comprehensive panel dataset of 692 dairy farms, we employed a parametric model to analyze the intricate input-output relationships within dairy production. Our findings reveal an average eco-efficiency score of 0.95, suggesting a promising potential for a 5% reduction in resource use and CH4 emissions without compromising production levels. Socio-economic factors, such as land tenure, farm experience, and government subsidies, were found to exert a positive influence on both farm performance and GHG emissions. Conversely, higher debt-to-asset ratios were associated with lower performance. Our research underscores the necessity for policies that support improvements at the farm level, such as facilitating knowledge transfer among farmers and increasing access to subsidies for environmentally friendly technologies. Future research should delve into other environmental impacts, including nitrogen emissions and biodiversity, to establish a more comprehensive framework for sustainable agricultural practices. By identifying opportunities for reducing GHG emissions while maintaining productivity, this study offers valuable insights for policymakers and industry stakeholders seeking to enhance the sustainability of the dairy sector in Norway and beyond.

Til dokument

Sammendrag

Considerable uncertainties and unknowns remain in the regional mapping of methane sources, especially in the extensive agricultural areas of Africa. To address this issue, we developed an observing system that estimates methane emission rates by assimilating drone and flux tower observations into an atmospheric dispersion model. We used our novel Bayesian inference approach to estimate emissions from various ruminant livestock species in Kenya, including diverse herds of cattle, goats, and sheep, as well as camels, for which methane emission estimates are particularly sparse. Our Bayesian estimates aligned with Tier 2 emission values of the Intergovernmental Panel on Climate Change. In addition, we observed the hypothesized increase in methane emissions after feeding. Our findings suggest that the Bayesian inference method is more robust under non-stationary wind conditions compared to a conventional mass balance approach using drone observations. Furthermore, the Bayesian inference method performed better in quantifying emissions from weaker sources, estimating methane emission rates as low as 100 g h−1. We found a ± 50 % uncertainty in emission rate estimates for these weaker sources, such as sheep and goat herds, which reduced to ± 12 % for stronger sources, like cattle herds emitting 1000–1500 g h−1. Finally, we showed that radiance anomalies identified in hyperspectral satellite data can inform the planning of flight paths for targeted drone missions in areas where source locations are unknown, as these anomalies may serve as indicators of potential methane sources. These promising results demonstrate the efficacy of the Bayesian inference method for source term estimation. Future applications of drone-based Bayesian inference could extend to estimating methane emissions in Africa and other regions from various sources with complex spatiotemporal emission patterns, such as wetlands, landfills, and wastewater disposal sites. The Bayesian observing system could thereby contribute to the improvement of emission inventories and verification of other emission estimation methods.

Sammendrag

Sammendrag på norsk I Norge beiter kjøttfe i store områder av boreal produksjonsskog preget av flatehogst på sommeren (mai-september). Vi studerte først mat- og habitatvalg av disse kyrne (Artikkel I– II), og deretter effektene av storfe på flora og fauna (Artikkel III-V). Datainnsamlingen foregikk i Sørost-Norge i 2015-2017 (Furnes/Vang og Stange/Romedal) og 2021-2023 (Steinvik og Deset). Vi studerte kyrnes ressursvalg ved å klassifisere deres adferd ved hjelp av GPS og akselerasjonsdata, ved å hente inn (fra kart) og måle (i felt) habitatvariabler, ved å samle inn møkkprøver til mikrohistologiske analyser og ved å modellere ressursseleksjonsfunksjoner. Vi fokuserte på unge granplantefelt for å studere effektene av kjøttfe på flora og fauna, siden kyrene selekterer for denne skogstypen. Dessuten har små grantrær høy økonomisk verdi og unge granplantefelt er rikere i blomster og pollinatorer enn det resterende skoglandskapet. På 24 unge granplantefelt satt vi opp parede prøveflater (20x20 m hver), hvorav en omgitt av et gjerde. Vi så på unge trær, vegetasjonen i feltsjiktet og blomsterbesøkende insekter. Siden halvparten av disse granplantefeltene lå innenfor, og den andre halvparten utenfor beiteområdene, kunne vi skille effektene av storfe fra effektene av hjortedyr, som lever vilt i disse skogene. Interaksjoner mellom storfe og hjortedyr studerte vi ved å sette opp viltkamera på de samme granplantefelt og ved å gjennomføre møkktellinger langs et rutemønster i ett av beiteområdene. Kyrne hadde en gressrik diett og selekterte for gressrike habitater, både på stor og på liten skala (Artikkel I). Storfe selekterte for forskjellige habitatvariabler (liten skala) avhengig av adferden: Når de beitet, selekterte de for gressrikt habitat, og når de hvilte, selekterte de for gressrikt habitat med lite helling og høy kronedekning (Artikkel II). Storfe førte til bittelitt høyere dødelighet av unge grantrær, men ikke til høyere risiko for tråkk- og beiteskader (Artikkel III). Storfe fjernet vegetasjon som konkurrerte med unge grantrær, det vil si unge løvtrær og vegetasjon i feltsjiktet (Artikkel III). Storfe påvirket plante-pollinatorsamfunnet på en annen måte enn hjortevilt: Utgjerding av klovdyr utenfor beiteområde (hjortedyr) førte til lavere abundans av blomster, mens utgjerding av klovdyr innenfor beiteområde (hjortedyr og storfe) førte til lavere abundans av blomster og lavere abundans av blomsterbesøkende insekter (Artikkel IV). Elg brukte andre habitattyper enn storfe (Artikkel V). Elgen sitt bruk av unge granplantefelt avtok med økende bruk av storfe (Artikkel V). Mulige beiteinnskrenkende tiltak, samt bevaring av artsmangfoldet i boreal produksjonsskog ble drøftet, og anbefalinger for videre forskning ble gitt.

Sammendrag

Dairy production systems are an essential backbone of European agriculture but have become highly specialized, heavily relying on external inputs, lacking resilience and meeting a desirable level of circularity to a limited extent. When livestock is re-coupled with grasslands and diversified crops, dairy production systems provide valuable ecosystem services through their interaction with land, vegetation and soil. The aim of the DairyMix project (www.dairymix.eu) is to address this topic through systems thinking, defining region-specific concepts for sustainable and circular integrated crop-forestry-livestock systems for dairy production in Europe and Latin America. Data from a wide range of dairy case study farms were collected in Germany, Italy, France, Norway, Ireland, Poland, Brazil and Argentina. To assess the environmental performances of the case studies, Life Cycle Assessment (LCA) was carried out; economic and social sustainability indicators were also calculated. A multi-criteria assessment framework was implemented, and models covering the cropping system and other farm components were integrated to compute and assess circularity indicators. Precision farming technologies, such as the ICT-based Online Tool for monitoring Indoor barn Climate, animal stress and emission (OTICE), were developed, contributing to tailored solutions and management tools for regional agricultural challenges. Agroforestry practices were assessed, and qualitative in-depth interviews were conducted in selected case studies. In particular, the farmers’ willingness to implement agroforestry, mixed farming and improve nutrient circularity was investigated. Preliminary findings are as follows: 1) Agroforestry, as a valuable multifunctional practice (e.g., increasing biodiversity, carbon sequestration, animal welfare), can provide alternative feed resources for ruminants. Nutritional value and digestibility tests on leaves of five tree species in Northern Italy revealed that mulberry (Morus nigra L.) has a nutritional profile comparable to lucerne or polyphytic meadows. This and other species can potentially be included as an alternative fodder in dairy cow diets. 2) Farmers are motivated by both environmental concerns and profitability. According to our findings, they intuitively value circular and sustainable practices and show attachment to the land, often originating from farm inheritance. Key barriers to implementing sustainable and circular practices included insufficient earnings, high workload, workforce shortages, and limited access to insurance. Bureaucracy, frequent policy changes, and unstable expectations further hindered the adoption of such practices. Farmers notably emphasized the lack of consumer knowledge about production processes and product origins, highlighting the need for more education and awareness. The project results are being incorporated into the DairyMix online platform. The DairyMix platform will display results from: i) the multi-criteria assessment, allowing the users to evaluate the effect of varying the weights of the sustainability principle considered; ii) the modelling of mitigation measures and alternative cropping scenarios in representative dairy production systems across Europe and Latin America. Users will be asked for feedback, which will be incorporated into the platform. In contrast to “one-fit-all” solutions, the DairyMix interactive platform will present a range of options for the sustainability of farming systems for dairy production, favouring the adoption of informed decisions for circular and integrated crop-forestry-livestock in different regions.