Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2022

Til dokument

Sammendrag

Key words: VKM, risk assessment, Norwegian Scientific Committee for Food and Environment, Norwegian Environment Agency, potential toxic elements (PTEs), fertiliser, soil improver, fertiliser products, growing media, circular economy, circulation of organic fertilisers, arsenic (As), cadmium (Cd), chromium Cr(tot) (Cr(III) and Cr(VI)), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni), zinc (Zn). Background and purpose of the report The potentially toxic elements (PTE) arsenic (As), cadmium (Cd), chromium Cr(tot) (Cr(III) and Cr(VI)), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni) and zinc (Zn) occur as ingredients or contaminants in many fertilisers, soil improvers, engineered soil and growing media. Application of these fertiliser products might represent a risk towards the environment, farm animals and humans, particularly when applied annually over several years. The present risk assessment evaluates the application of selected fertilisers according to certain scenarios for representative Norwegian agricultural areas, from Troms in the North to Ås in Southeastern and Time in Southwestern Norway, with different soil properties, precipitation and PTE concentration in present agricultural soil. There is an increasing trend to produce locally (e.g. in urban farming) and home-grown vegetables that are cultivated in engineered soil and growth media. The maximum levels (MLs) set for PTEs in different organic fertilisers, engineered soil and growing media for use in urban farming, home growing and the cultivation of vegetables and garden fruits, and a set of MLs also for application in agricultural cultivation of crops, have been evaluated. Environmental fate processes and the transfer of PTEs have been modelled and the environmental risks for terrestrial and aquatic organisms, including from secondary poisoning have been estimated. Potential risks to humans and farmed animals by increased exposure to PTEs from, respectively, agriculturally produced crops, vegetables cultivated at home and urban farming or forage and grazing have been evaluated. The recycling of nutrients is urgently needed to achieve circular economy, but the derived sustainable products have to be safe, which requires the introduction of and adherence to science-based maximum levels of unwanted substances (e.g. pollutants). This assessment evaluates consequences of the application of different fertiliser products: mineral P fertilisers, manure from cattle, pig, poultry and horse, fish sludge, digestates and sewage sludge - in order to identify PTE sources with potential environmental, animal and human health risks, and to evaluate the appropriateness of the current MLs regarding different applications of organic-based fertilisers, engineered soil and growing media at present, and in a 100-year perspective. Approach and methods applied The approach for environmental and health risk assessments builds on previous work performed for hazardous substances in soil (e.g. VKM 2019, VKM 2014, VKM, 2009, Six and Smolders, 2014). Concentrations of PTEs in soil over time were calculated using a mass balance model, which considers the input by atmospheric deposition, use of fertilisers and soil improvers, as well as loss by leaching, run-off and plant uptake. The resulting first-order differential equation was solved analytically and implemented into Excel®. Run-off and loss by leaching were estimated from data on precipitation, infiltrating fraction and run-off fraction of the water under consideration of the distribution coefficient Kd for the concentration ratio of bulk soil-to-water. This Kd value takes aging sufficiently into account and is thus more realistic than those derived from batch tests. The Kd was estimated separately for each region using established regression equations, with soil pH, organic matter content and clay content as predictors. ...........

2021

Sammendrag

Det er utviklet en metode for arealrepresentativ overvåking av semi-naturlig eng i Norge (ASO). ASO er tilpasset Arealrepresentativ naturovervåking (ANO) slik at den kan levere data som kan benyttes til å beregne økologisk tilstand for semi-naturlig eng. Denne rapporten beskriver uttesting av ASO metoden i felt 2020, en ferdigstilt metode basert på erfaringer med uttestingen, forslag til utvalg av områder som skal overvåkes, beregning av økologisk tilstand, kostnadsestimater, forslag til tre alternative ASO og en feltinstruks.

Til dokument

Sammendrag

Norge har en målsetning om at utviklingen for truede og nær truede arter og naturtyper skal bedres. De fleste truede arter og naturtyper er avhengige av tiltak for å sikre og opprettholde populasjoner og forekomster med god tilstand. For å kunne innrette tiltak på en kostnadseffektiv måte og vurdere utviklingen for truede arter og naturtyper trengs overvåking. Denne rapporten presenterer opplegg for overvåking av effekter av forvaltningstiltak for elleve prioriterte arter og sju utvalgte naturtyper. For å utarbeide overvåkingsopplegg ble det utarbeidet en mal for å sammenstille bakgrunnsin-formasjon. Malen tok utgangspunkt i det konseptuelle rammeverket for effektovervåking fra Evju mfl. (2020). Å lage et opplegg for effektovervåking innebærer å 1) avgrense definisjonsområdet og overvåkingslokalitetene, 2) spesifisere hvordan overvåkingslokalitetene skal velges, 3) velge overvåkingsindikatorer for de effektene som forventes, 4) bestemme utvalg av lokaliteter etter valgt metodikk, inkludert tiltaks- og kontrollområder, og 5) definere metodikk for datainnsamling, inkludert observasjonsperiode, antall gjentak og metodikk for registrering av valgte indikatorer. To parallelle opplegg er gitt for hver art/naturtype: et optimalopplegg (det best tenkelige, med hensyn på punktene 1-5 over) og et minimumsopplegg, som tar sikte på å fange opp de viktigste effektene av de viktigste tiltakene. Overvåkingsoppleggene er kostnadsberegnet. Disse omfattende bakgrunnsdokumentene er grunnlag for to-siders faktaark presentert i NINA-rapport 1975 (Evju mfl. 2021a), hvor mer informasjon om bakgrunn for prosjektet og metoder, så vel som oppsummering av resultater og anbefalinger for videre arbeid, er gitt. Disse rapportene må leses i sammenheng.

Sammendrag

This paper describes a tool that enables farmers to time harvests and target nitrogen (N) inputs in their forage production, according to the prevailing yield potential. Based on an existing grass growth model for forage yield estimation, a more detailed process-based model was developed, including a new nitrogen module. The model was tested using data from an experiment conducted in a grassland-rich region in central Norway and showed promising accuracy with estimated root mean square error (RMSE) of 50 and 130 g m-2 for dry matter yield in the trial. Three parameters were detected as highly sensitive to model output: initial value of organic N in the soil, fraction of humus in the initial organic N in the soil, and fraction of decomposed N mineralized. By varying these parameters within a range from 0.5 to 1.5 of their respective initial value, most of the within-field variation was captured. In a future step, remotely sensed information on model output will be included, and in-season model correction will be performed through re-calibration of the highly sensitive parameters.