Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2016

Til dokument

Sammendrag

Background: A functional forest carbon measuring, reporting and verification (MRV) system to support climate change mitigation policies, such as REDD+, requires estimates of forest biomass carbon, as an input to estimate emissions. A combination of field inventory and remote sensing is expected to provide those data. By linking Landsat 8 and forest inventory data, we (1) developed linear mixed effects models for total living biomass (TLB) estimation as a function of spectral variables, (2) developed a 30 m resolution map of the total living carbon (TLC), and (3) estimated the total TLB stock of the study area. Inventory data consisted of tree measurements from 500 plots in 63 clusters in a 15,700 km2 study area, in miombo woodlands of Tanzania. The Landsat 8 data comprised two climate data record images covering the inventory area. Results: We found a linear relationship between TLB and Landsat 8 derived spectral variables, and there was no clear evidence of spectral data saturation at higher biomass values. The root-mean-square error of the values predicted by the linear model linking the TLB and the normalized difference vegetation index (NDVI) is equal to 44 t/ha (49 % of the mean value). The estimated TLB for the study area was 140 Mt, with a mean TLB density of 81 t/ha, and a 95 % confidence interval of 74–88 t/ha. We mapped the distribution of TLC of the study area using the TLB model, where TLC was estimated at 47 % of TLB. Conclusion: The low biomass in the miombo woodlands, and the absence of a spectral data saturation problem suggested that Landsat 8 derived NDVI is suitable auxiliary information for carbon monitoring in the context of REDD+, for low-biomass, open-canopy woodlands.

Sammendrag

The present study aims to develop biologically sound and parsimonious site index models for Norway to predict changes in site index (SI) under different climatic conditions. The models are constructed using data from the Norwegian National Forest Inventory and climate data from the Norwegian meteorological institute. Site index was modeled using the potential modifier functional form, with a potential component (POT) depending on site quality classes and two modifier components (MOD): temperature and moisture. Each of these modifiers was based on a portfolio of candidate variables. The best model for spruce-dominated stands included temperature as modifier (R2 = 0.56). In the case of pine- and deciduous-dominated stands, the best models included both modifiers (R2 = 0.40 and 0.54 for temperature and moisture, respectively). We illustrate the use of the models by analyzing the possible shift in SI for year 2100 under one (RCP4.5) of the benchmark scenarios adopted by the Intergovernmental Panel on Climate Change for its fifth assessment report. The models presented can be valuable for evaluating the effect of climate change scenarios in Norwegian forests.