Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2022

Sammendrag

Continued anthropogenic environmental change is wreaking havoc on natural populations, with the stresses and pulses of induced ecological processes affecting a species' local habitat, resulting in inadvertent distribution shifts, hybridization events, and eventual biodiversity loss. It is more critical than ever to monitor the unintended consequences of human activity on not only natural populations, but also community structures and ecosystems. DNA-based (genetic and genomic) monitoring is a critical component of biodiversity monitoring because it allows for the tracking and quantification of temporal changes in population genetic metrics or other population data. Genetic/genomic monitoring enables the estimation of a variety of biological parameters, including demographic parameters (abundance, occupancy, hybridization, and disease status), population genetic parameters (genetic diversity, structure, and effective population size), and responses to anthropogenic selective pressures (exploitation, biological invasions, and climate change). This keynote address will highlight the practical implications of integrating genetic data into management, conservation objectives, and policymaking, as well as capacity building through international partnerships, using case studies from the Norwegian Barents Region.

Til dokument

Sammendrag

Det er ikke registrert sammendrag

Sammendrag

Three strains of chlorophyte microalgae indigenous in Norway were studied regarding their potential for nutrient removal and resource recovery from wastewater. The nutrient uptake, growth, and cell composition (total proteins and carbohydrates) were monitored under a controlled batch environment for 14 days. Additionally, the fatty acids were analyzed at the end of the study. The fastest nutrient removal was achieved by Lobochlamys segnis F12 that used up NH4+ (28 mg L-1) and PO43- (15 mg L-1) after 4 days. Similar PO43- uptake was achieved by Tetradesmus wisconsinensis H1 while its NH4+ uptake took 2 days longer. Both strains showed a higher specific growth rate (1.1 day-1) than Klebsormidium flaccidum NIVA-CHL80 (0.55 day-1). The highest biomass (1.276 ± 21 mg L-1) and carbohydrates content (40%) were achieved by T. wisconsinensis. K. flaccidum was characterized by superior protein content (53 ± 4%). In terms of total fatty acids production both K. flaccidum and L. segnis were favored (184 ± 6 and 193 ± 12 mg g-1 dry cells), especially with their high polyunsaturated fatty acid content (82 and 67%, respectively). The fatty acids of K. flaccidum consisted mainly C18:2 n-6 (73% of the total). L. segnis had a preferable n3 to n6 ratio (1.3) in their fatty acid profile. The proteins and carbohydrates content changed in all strains depending on the growth stage. Therefore, resource recovery scenarios could be further optimized for a specific cell component production combined with an appropriate strategy for nutrient removal from wastewater.

Til dokument

Sammendrag

The rapid conversion of tropical rainforests into monoculture plantations of rubber (Hevea brasiliensis) in Southeast Asia (SEA) necessitates understanding of rubber tree physiology under local climatic conditions. Frequent fog immersion in the montane regions of SEA may affect the water and carbon budgets of the rubber trees and the plantation ecosystems. We studied the effect of fog on various plant physiological parameters in a mature rubber plantation in southwest China over 3 years. During the study period, an average of 141 fog events occurred every year, and the majority occurred during the dry season, when the temperature was relatively low. In addition to the low temperature, fog events were also associated with low vapor pressure deficit, atmospheric water potential, relative humidity and frequent wet-canopy conditions. We divided the dry season into cool dry (November-February) and hot dry (March-April) seasons and classified days into foggy (FG) and non-foggy (non-FG) days. During the FG days of the cool dry season, the physiological activities of the rubber trees were suppressed where carbon assimilation and evapotranspiration showed reductions of 4% and 15%, respectively, compared to the cool dry non-FG days. Importantly, the unequal declines in carbon assimilation and evapotranspiration led to enhanced crop water productivity (WPc) on cool dry FG days but insignificant WPc values were found between FG and non-FG days of the hot dry season. Our results suggest that, by regulating plant physiology, fog events during the cool dry season significantly reduce water demand and alleviate water stress for the trees through improved WPc.