Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2018

Til dokument

Sammendrag

Vannområde Glomma og Grensevassdragene utgjør et areal på nesten 30 000 km2. Som grunnlag for arbeidet med tiltaksplanlegging er det behov for å definere en del mindre tiltaksområder som skal ha særlig fokus. Inndelingen er basert på analyse av data om sårbare vannforekomster og tilførsler fra fulldyrket mark, husdyrhold, avløp i spredt bebyggelse og/eller gruvevirksomhet. Datagrunnlaget er hentet fra digitale kart og registre. Resultatet fra prosjektet er digitale kart over 8 tiltaksområder. Disse er også koblet til tiltaksdatabasen i rapporteringsverktøyet Glommadata.

Til dokument

Sammendrag

BACKGROUND: In the past few years, much effort has been invested into developing a new blue economy based on harvesting, cultivating and processing marine macroalgae in Norway. Macroalgae have high potential for a wide range of applications, e.g. as source of pharmaceuticals, production of biofuels or as food and feed. However, data on the chemical composition of macroalgae from Norwegian waters are scant. This study was designed to characterize the chemical composition of 21 algal species. Both macro- and micronutrients were analysed. Concentrations of heavy metals and the metalloid arsenic in the algae were also quantified. RESULTS: The results confirm that marine macroalgae contain nutrients which are relevant for both human and animal nutrition, the concentrations whereof are highly dependent on species. Although heavy metals and arsenic were detected in the algae studied, concentrations were mostly below maximum allowed levels set by food and feed legislation in the EU. CONCLUSION: This study provides chemical data on a wide range of algal species covering the three taxonomic groups (brown, red and green algae) and discusses both benefits of and potential limitations to their use for food and feed purposes.

Til dokument

Sammendrag

We investigated climatic trends in two contrasting locations in Europe at a regional level and at two specific sites, and we analysed how these trends are associated with the dry matter yield (DMY) of agriculturally improved grasslands. Trends of different meteorological variables were evaluated for Wielkopolska province, central Poland (1985-2014) and Troms county, northern Norway (1989-2015), as well as for two research stations located in these regions. Significant trends of increased mean air temperatures annually, and in April, June, July, August and November were identified both at the regional and site levels in Wielkopolska. In addition, growing degree days were increasing in Wielkopolska. In Troms, the common trends for the region and site studied were increase in mean air temperature in May and decrease in January. Grassland DMY was subsequently regressed against those meteorological variables for which significant trends were detected. In the Wielkopolska region, yields were negatively associated with the increase in air temperature in June, August, and the annual air temperature. The last relationship was also detected at the site level. We did not find any significant effects of climate trends on grassland DMY in the Norwegian study site or region.

Til dokument

Sammendrag

Forest management affects the distribution of tree species and the age class of a forest, shaping its overall structure and functioning and in turn the surface–atmosphere exchanges of mass, energy, and momentum. In order to attribute climate effects to anthropogenic activities like forest management, good accounts of forest structure are necessary. Here, using Fennoscandia as a case study, we make use of Fennoscandic National Forest Inventory (NFI) data to systematically classify forest cover into groups of similar aboveground forest structure. An enhanced forest classification scheme and related lookup table (LUT) of key forest structural attributes (i.e., maximum growing season leaf area index (LAImax), basal-area-weighted mean tree height, tree crown length, and total stem volume) was developed, and the classification was applied for multisource NFI (MSNFI) maps from Norway, Sweden, and Finland. To provide a complete surface representation, our product was integrated with the European Space Agency Climate Change Initiative Land Cover (ESA CCI LC) map of present day land cover (v.2.0.7). Comparison of the ESA LC and our enhanced LC products (https://doi.org/10.21350/7zZEy5w3) showed that forest extent notably (κ = 0.55, accuracy 0.64) differed between the two products. To demonstrate the potential of our enhanced LC product to improve the description of the maximum growing season LAI (LAImax) of managed forests in Fennoscandia, we compared our LAImax map with reference LAImax maps created using the ESA LC product (and related cross-walking table) and PFT-dependent LAImax values used in three leading land models. Comparison of the LAImax maps showed that our product provides a spatially more realistic description of LAImax in managed Fennoscandian forests compared to reference maps. This study presents an approach to account for the transient nature of forest structural attributes due to human intervention in different land models.

Til dokument

Sammendrag

Achieving an operational compromise between spatial coverage and temporal resolution in national scale river water quality monitoring is a major challenge for regulatory authorities, particularly where chemical concentrations are hydrologically dependent. The efficacy of flow-weighted composite sampling (FWCS) approaches for total phosphorus (TP) sampling (n = 26–52 analysed samples per year), previously applied in monitoring programmes in Norway, Sweden and Denmark, and which account for low to high flow discharges, was assessed by repeated simulated sampling on high resolution TP data. These data were collected in three research catchments in Ireland over the period 2010–13 covering a base-flow index range of 0.38 to 0.69. Comparisons of load estimates were also made with discrete (set time interval) daily and sub-daily sampling approaches (n = 365 to >1200 analysed samples per year). For all years and all sites a proxy of the Norwegian sampling approach, which is based on re-forecasting discharge for each 2-week deployment, proved most stable (median TP load estimates of 87–98%). Danish and Swedish approaches, using long-term flow records to set a flow constant, were only slightly less effective (median load estimates of 64–102% and 80–96%, respectively). Though TP load estimates over repeated iterations were more accurate using the discrete approaches, particularly the 24/7 approach (one sample every 7 h in a 24 bottle sampler - median % load estimates of 93–100%), composite load estimates were more stable, due to the integration of multiple small samples (n = 100–588) over a deployment.

Til dokument

Sammendrag

Over their life course, people change their consumption habits when prices, income, tastes or nutritional needs change. The time period during which an individual grew up is often reflected in his or her consumption of different types of food. To investigate the possible links between demographic changes and food consumption, we constructed two-step censored demand systems for different groups of foods. We estimated the systems using Norwegian data for the 1986 – 2012 period. In the systems, age, period, cohort, other demographic and economic variables are included. The estimated systems are used to construct a long-run forecasting model for meat and dairy products. In this model, younger cohorts replace older cohorts with a different consumption pattern. The total purchases of beef, lamb, pork and fluid milk are predicted to decrease, while the total purchases of chicken, yoghurt and cheese are predicted to increase towards 2027.

Sammendrag

The apple fruit moth Argyresthia conjugella (Lepidoptera, Yponomeutidae) is a seed predator of rowan (Sorbus aucuparia) and is distributed in Europe and Asia. In Fennoscandia (Finland, Norway and Sweden), rowan fruit production is low every 2–4 years, and apple (Malus domestica) functions as an alternative host, resulting in economic loss in apple crops in inter-mast years. We have used Illumina MiSeq sequencing to identify a set of 19 novel tetra-nucleotide short tandem repeats (STRs) in Argyresthia conjugella. Such motifs are recommended for genetic monitoring, which may help to determine the eco-evolutionary processes acting on this pest insect. The 19 STRs were optimized and amplified into five multiplex PCR reactions. We tested individuals collected from Norway and Sweden (n = 64), and detected very high genetic variation (average 13.6 alleles, He = 0.75) compared to most other Lepidoptera species studied so far. Spatial genetic differentiation was low and gene flow was high in the test populations, although two non-spatial clusters could be detected. We conclude that this set of genetic markers may be a useful resource for population genetic monitoring of this economical important insect species.

Sammendrag

Background: Generalized height-diameter curves based on a re-parameterized version of the Korf function for Norway spruce (Picea abies (L.) Karst.), Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth) in Norway are presented. The Norwegian National Forest Inventory (NFI) is used as data base for estimating the model parameters. The derived models are developed to enable spatially explicit and site sensitive tree height imputation in forest inventories as well as future tree height predictions in growth and yield scenario simulations. Methods: Generalized additive mixed models (gamm) are employed to detect and quantify potentially non-linear effects of predictor variables. In doing so the quadratic mean diameter serves as longitudinal covariate since stand age, as measured in the NFI, shows only a weak correlation with a stands developmental status in Norwegian forests. Additionally the models can be locally calibrated by predicting random effects if measured height-diameter pairs are available. Based on the model selection of non-constraint models, shape constraint additive models (scam) were fit to incorporate expert knowledge and intrinsic relationships by enforcing certain effect patterns like monotonicity. Results: Model comparisons demonstrate that the shape constraints lead to only marginal differences in statistical characteristics but ensure reasonable model predictions. Under constant constraints the developed models predict increasing tree heights with decreasing altitude, increasing soil depth and increasing competition pressure of a tree. A two-dimensional spatially structured effect of UTM-coordinates accounts for the potential effects of large scale spatially correlated covariates, which were not at our disposal. The main result of modelling the spatially structured effect is lower tree height prediction for coastal sites and with increasing latitude. The quadratic mean diameter affects both the level and the slope of the height-diameter curve and both effects are positive. Conclusions: In this investigation it is assumed that model effects in additive modelling of height-diameter curves which are unfeasible and too wiggly from an expert point of view are a result of quantitatively or qualitatively limited data bases. However, this problem can be regarded not to be specific to our investigation but more general since growth and yield data that are balanced over the whole data range with respect to all combinations of predictor variables are exceptional cases. Hence, scam may provide methodological improvements in several applications by combining the flexibility of additive models with expert knowledge.

Til dokument

Sammendrag

European pulse production faces a continued loss of cultivated area along with decreasing or stagnant yields. Vicia faba is a traditional legume with high genetic diversity cultivated in a wide range of European climates. Therefore V. faba is promising to identify stable and high yielding genotypes for specific target environments. The Nordic-Baltic region is challenging for legume growing due to short vegetation period and heat/drought stress in continental climates. Within the pan-European Eurolegume project a set of 18 V. faba accessions containing var. minor and major local landraces and modern cultivars of different geographical origin was evaluated in multi-environmental trials. The aim of this study was to identify ideotypes for Northern Europe and reveal key phenotypic traits conferring high yield potential and stability. Four target environmental clusters represented the range of Nordic growing conditions with yield levels from 128 gm−2 to 380 gm−2. Multivariate classification differentiated distinctive groups of var. minor and var. major accessions with few overlapping genotypes, the former having higher average yield, taller structure, more pods per node and longer flowering duration. Late sowing under long-day conditions above 55°N latitudes resulted in early flowering due to short vegetative development (650 °Cd). Extended flowering duration and tall stature were the most important traits conferring high yields. A negative trade-off between yield potential and yield stability was detected, with yield advantages of stress resistant genotypes only in a limited range of low yielding target environments (< 180 gm−2). The highest yielding accessions (Latvian var. minor landrace Bauska and var. major landrace Cēres) represented a favourable combination of yield potential and stability. High temperatures at flowering, within a range of average maximum July temperatures between 20.5–24.5 °C, were identified as most critical environmental variable depressing yield levels between 38.5 (var. major) and 56.2 (var. minor) gm−2 °C−1. It was concluded that Baltic landraces are promising ideotypes, with adapted flowering phenology and morphological structure, for increased V. faba yields in Nordic target environments.

Til dokument

Sammendrag

The long-term carrying capacity for biomass production is highly dependent on available soil resources. A soil test method for potential nutrient release capability was applied to 23 Nordic and Baltic forest soil profiles. The soils had coarse (10), medium (12) and fine (1) soil texture and most were podsolising. Extraction with dilute (0.1 M, 1:50 sample:solution ratio) nitric acid for 2 h was followed by 48 h and 168 h of extraction in soil samples from pedogenetic horizons. Dilute nitric acid solution was replaced after each step and release of mineral nutrient elements in solution was determined. C-horizon nutrient release (µmol g−1 fine earth, 0–218 h) was negatively correlated with mean annual temperature (MAT 0.5–8.5 °C) and for potassium (K) also mean annual precipitation (MAP 523–1440 mm y−1) suggesting a gradient in the mineralogy of the parent material that sediment transports during Pleistocene glaciations have not distorted. In B-horizons of sandy parent materials with felsic mineralogy cumulative nutrient release was positively correlated with pH and with Al and Fe release suggesting accumulation and stabilisation of nutrients in pedogenic products. E-horizons had less nutrient release capability than C-horizons, indicating a more weathered state of E-horizon parent material. Soil formation due to mineral dissolution and leaching of base cations and the gradient in parent material origin and weathering state both affected the observed pattern of nutrient release. On soils with very low mineral P resources (e.g. < 250 kg P ha−1 to 50 cm) by repeated dilute acid extraction, harvest of nutrient rich biomass will not be sustainable. However, it can’t be concluded that sites with high P availability by 0.1 M HNO3 can support an intensive harvest without compensation of P (and Ca) by fertilisation. Due to buffering of removed base cations in B-horizons, nutrient export with biomass may not be traceable as pH decline at decadal time scale. Therefore, the direct measurement of nutrient stocks by the extraction procedure (or other similar assessment of nutrient reserves by strong acid) is suggested as indicative for the mineral weathering capability of forest soils to recover from P and base cation depletion by biomass harvest.